Structural, Magnetocaloric, and Critical Behavior of La0.5Ca0.5Mn1−xVxO3 Manganites Prepared by High-Energy Ball Milling

  • Moufida MansouriEmail author
  • L. Fallarino
  • R. M’nassri
  • W. Cheikhrouhou-Koubaa
  • A. Cheikhrouhou
Original Paper


The high-energy ball milling method has been used to synthesize the polycrystalline powders La0.5Ca0.5Mn1−xVxO3 (x = 0.05, x = 0.10). The Rietveld refinement technique shows that the samples crystallized in the orthorhombic structure with the Pbnm space group. The La0.5Ca0.5Mn0.95V0.05O3 exhibits a second-order phase transition from paramagnetic (PM) to ferromagnetic (FM) state at TC = 208 ± 1 K followed by a second one from FM to charge ordering–antiferromagnetic state at TN = 150.0 ± 0.1 K when decreasing temperature. The substituted sample with 10% amount of vanadium dopant corresponds to the disappearance of the charge-order phase; meanwhile, it was suppressed for 5% of the vanadium in the solid-state route. The Curie temperature TC increases with vanadium content from 208 ± 1 K for x = 0.05 to 255 ± 1 K for x = 0.10. The values of the maximum of the magnetic entropy change under a magnetic field change of 5 T are found to be 2.95 ± 0.04 J kg−1 K−1 and 5.42 ± 0.07 J kg−1 K−1 corresponding to a relative cooling power RCP = 128.4 ± 0.3 and 220.8 ± 0.7 for x = 0.05 and x = 0.10 respectively. The order of phase transition has been determined. The critical exponent study has been performed for La0.5Ca0.5Mn0.9V0.10O3 by using the Arrott plot, Kouvel–Fisher method, and critical isotherm analysis. The measured β, γ, and δ values are in agreement with those expected for the tricritical mean-field model.


High-energy ball milling Manganites Magnetocaloric effect Critical exponents 



M. Mansouri is grateful to the CIC nanoGUNE (Donostia-San Sebastian, Spain) and especially to Andreas Berger and all members of the nanomagnetism group.

Funding information

This work was funded by the Tunisian Ministry of Higher Education and Scientific Research. L. Fallarino would like to thank the funding support from the Predoctoral program of the Basque Government through Grant. No. PRE_2015_2_0126.


  1. 1.
    Von Helmolt, R., Wecker, J., Holzapfel, B., Schultz, L., Samwer, K.: Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 71, 2331 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    Jin, S., McCormack, M., Tiefel, T.H., Ramesh, R.: Colossal magnetoresistance in LaCaMnO ferromagnetic thin films. J. Appl. Phys. 76, 6929 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    Yoshizawa, H., Kawano, H., Tomioka, T., Tokura, Y.: Neutron-diffraction study of the magnetic-field-induced metal-insulator transition in Pr0.7Ca0.3MnO3. Phys. Rev. B. 52, 13145 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    Goodenough, J.B.: Phys. Rev. 164, 785 (1967)ADSCrossRefGoogle Scholar
  5. 5.
    Schiffer, P., Ramires, A.P., Bao, W., Cheong, S.-W.: Low temperature magnetoresistance and the magnetic phase diagram of La 1− x Ca x MnO 3. Phys. Rew. Lett. 75, 3336 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    Hwang, H.Y., Cheong, S.-W., Radaelli, P.G., Marezio, M., Batlogg, B.: Lattice effects on the magnetoresistance in doped LaMnO3. Phys Rew Lett. 75, 914 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    Khondabi, M., Ahmadvand, H., Kameli, P., Amirzadeh, P., Salamati, H., Dasgupta, P., Poddar, A.: Magnetocaloric and phase coexistence in La0.5Ca0.5–xSrxMnO3 manganites. J. Appl. Phys. 118, 233908 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Radaelli, P.G., Cox, D.E., Marezio, M., Cheong, S.-W.: Charge, orbital, and magnetic ordering in La0.5Ca0.5MnO3. Phys. Rev. B. 55, 3015 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    Rivadulla, F., Freita-Alvite, M., López-Quintela, M.A.: Coexistence of paramagnetic-charge-ordered and ferromagnetic-metallic phases in La0.5Ca0.5MnO3 evidenced by electron spin resonance. J. Appl. Phys. 91, 785 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Amirzadeh, P., Ahmadvand, H., Kameli, P., Aslibeiki, B., Salamati, H., Gamzatov, A.G., Aliev, A.M., Kamilov, I.K.: Phase separation and direct magnetocaloric effect in La 0.5 Ca 0.5 MnO manganite. J. Appl. Phys. 113, 123904 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Mehri, A., Cheikh-rouhou-Koubaa, W., Koubaa, M., Cheikh-rouhou, A.: Magnetic and magnetocaloric properties of monovalent substituted La0.5Ca0.45A0.05MnO3 (A = Na, Ag, K) perovskite manganites. Mater. Sci. Eng. 28, 012049 (2012)Google Scholar
  12. 12.
    Barnabe, A., Maignan, A., Hervieu, M., Damay, F., Martin, C., Raveau, B.: Extension of colossal magnetoresistance properties to small A site cations by chromium doping in Ln0.5Ca0.5MnO3 manganites. Appl. Phys. Lett. 71, 3907 (1997)Google Scholar
  13. 13.
    Damay, F., Martin, C., Maignan, A., Raveau, B.: Charge and magnetic order suppression by Mn site doping in layered and three-dimensional manganites. J. Magn. Magn. Mater. 183, 143-151 (1998)Kuwahara, H., Tomioka, Y., Asamitsu, A., Moritomo, Y., Tokura, Y.: A first-order phase transition induced by a magnetic field. Science. 270, 5238 (1995)Google Scholar
  14. 14.
    Kuwahara, H., Tomioka, Y., Asamitsu, A., Moritomo, Y., Tokura, Y.: A first-order phase transition induced by a magnetic field. Science. 270, 5238 (1995)Google Scholar
  15. 15.
    Sarkar, T., Ghosh, B., Raychaudhuri, A.K.: Crystal structure and physical properties of half-doped manganite nanocrystals with size < 100nm. Phys. Rev. B. 77, 235112 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    ShankarAkhilesh, U., Singh, K.: Origin of suppression of charge ordering transition in nanocrystalline Ln0.5Ca0.5MnO3 (Ln = La, Nd, Pr) ceramics. Phys. Chem. C. 119, 51 (2015) 28620,28630Google Scholar
  17. 17.
    Mansouri, M., Omrani, H., Cheikhrouhou-Koubaa, W., Koubaa, M., Madouri, A., Cheikhrouhou, A.: Effect of vanadium doping on structural, magnetic and magnetocaloric properties of La0.5Ca0.5MnO3. J. Magn. Magn. Mater. 401, 593–599 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Gencer, H., Kolat, V.S., Atalay, S.J.: Microstructure and magnetoresistance in La0.67Ca0.33Mn1−xVxO3 (x = 0, 0.03, 0.06, 0.1, 0.15 and 0.25) compound. J. Alloy. Compd. 422, 40 (2006)CrossRefGoogle Scholar
  19. 19.
    Zhao, T.S., Li, B.H., Han, G.: Magnetic, transport and microstructural properties of polycrystalline samples with nominal composition of La0.7Ca0.3Mn1−xVxO3 (0⩽x⩽0.2). J. Magn. Magn. Mater. 320, 924 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Nisha, P., Santhosh, P.N., Suresh, K.G., Pavithran, C., Varma, M.R.: Near room temperature magneto caloric effect in V doped La0.67Ca0.33MnO3 ceramics. J. Alloy. Compd. 478, 566–571 (2009)CrossRefGoogle Scholar
  21. 21.
    Nisha, P., Savitha Pillai, S., Darbandi, A., Misra, A., Suresh, K.G., Raama Varma, M., Hahn, H.: Magnetism and magnetocaloric effect in nanocrystalline La0.67Ca0.33Mn0.9V0.1O3 synthesized by nebulized spray pyrolysis. J. Phys. D: Appl. Phys. 43, 135001 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969)CrossRefGoogle Scholar
  23. 23.
    Roisnel, T., Rodriguez-Carvajal, J.: Computer program, F U L LP R O F, LLB-LCSIM (2003)Google Scholar
  24. 24.
    Loudon, J.C., Mathur, N.D., Midgley, P.A.: Charge-ordered ferromagnetic phase in La0.5Ca0.5MnO3. Nature. 420, 797 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    Goodenough, J.B.: Phys. Rev. 100, 564 (1955)ADSCrossRefGoogle Scholar
  26. 26.
    Rivadulla, F., Hueso, L.E., Miguens, D.R., Sande, P., Fondado, A., Rivas, J., Lopez-Quintela, M.A.: Coexistence of paramagnetic-charge-ordered and ferromagnetic-metallic phases in La0.5Ca0.5MnO3 evidenced by electron spin resonance. J. Appl. Phys. 9, 10 (2002)Google Scholar
  27. 27.
    Bohigas, X., Tejada, J., Marinez-Sarrion, M.L., Tripp, S., Black, R., Black, R.: Magnetic and calorimetric measurements on the magnetocaloric effect in La0.6Ca0.4MnO3. J. Magn. Magn. Mater. 208, 85–92 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    Phan, M.-H., Yu, S.-C.: Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Biswas, A., Samanta, T., Banerjee, S., Das, I.: Observation of large low field magnetoresistance and large magnetocaloric effects in polycrystalline Pr0.65(Ca0.7Sr0.3)0.35MnO3. Appl. Phys. Lett. 92, 012502 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Franco, V., Blazquez, J.S., Conde, A.: Appl. Phys. Lett. 89, 222512 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Murakami, S., Nagaosa, N.: Colossal magnetoresistance in manganites as a multicritical, phenomenon. Phys. Rev. Lett. 90, 197201 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    Arrott, A., Noakes, J.E.: Approximate equation of state for nickel near its critical temperature. Phys. Rev. Lett. 19, 786 (1967)ADSCrossRefGoogle Scholar
  33. 33.
    Kaul, S.N.: Static critical phenomena in ferromagnets with quenched disorder. J. Magn. Magn. Mater. 53, 5 (1985)ADSCrossRefGoogle Scholar
  34. 34.
    Zhang, L., Fang, J., Fan, J., Ge, M., Ling, L., Zhang, C., Pi, L., Tan, S., Zhang, Y.: J. Alloys Compd. 588, 294 (2014)CrossRefGoogle Scholar
  35. 35.
    Oumezzine, M., Peña, O., Kallel, S., Oumezzine, M.: Crossover of the magnetocaloric effect and its importance on the determination of the critical behaviour in the La0.67Ba0.33Mn0.9Cr0.1O3 perovskite manganite. J. Alloys Compd. 539, 116–123 (2012)CrossRefGoogle Scholar
  36. 36.
    Mleiki, A., Othmani, S., Cheikhrouhou-Koubaa, W., Koubaa, M., Cheikhrouhou, A., Hlil, E.K.: Critical behavior near the ferromagnetic–paramagnetic phase transition in compounds Sm0.55-xPrxSr0.45MnO3 (0.3 < x < 0.4). J. Alloys Compd. 648, 1043 (2015)CrossRefGoogle Scholar
  37. 37.
    Messaoui, I., Kumaresavanji, M., Riahia, K., Cheikhrouhou Koubaa, W.: Mohamed Koubaa, A. Cheikhrouhou, Magnetic, magnetocaloric and critical behavior study of La0.78Pb0.22MnO3 manganite near room-temperature. Ceram. Int. 43 A, 498–506 (2017)CrossRefGoogle Scholar
  38. 38.
    Fisher, M.E., Ma, S.K., Nickel, B.G.: Critical exponents for long-range interactions. Phys. Rev. Lett. 29, 917 (1972)ADSCrossRefGoogle Scholar
  39. 39.
    Kouvel, J.S., Fisher, M.E.: Detailed magnetic behavior of nickel near its Curie point. Phys. Rev. 136, A1626 (1964)ADSCrossRefGoogle Scholar
  40. 40.
    Widom, B.: Surface tension and molecular correlations near the critical point. J. Chem. Phys. 43, 3892 (1965)ADSCrossRefGoogle Scholar
  41. 41.
    Kim, D., Revaz, B., Zink, B.L., Hellman, F., Rhyne, J.J., Mitchell, J.F.: Tricritical point and the doping dependence of the order of the ferromagnetic phase transition of La1−xCaxMnO3. Rev. Let. 89, 227202 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Moufida Mansouri
    • 1
    • 2
    Email author
  • L. Fallarino
    • 3
  • R. M’nassri
    • 4
  • W. Cheikhrouhou-Koubaa
    • 1
  • A. Cheikhrouhou
    • 1
  1. 1.Digital Research Center of SfaxLT2S Lab (LR16 CRNS 01)SfaxTunisia
  2. 2.Center for Functionalized Magnetic MaterialsImmanuel Kant Baltic Federal UniversityKaliningradRussia
  3. 3.Helmholtz-Zentrum Dresden-RossendorfInstitute of Ion Beam Physics and Materials ResearchDresdenGermany
  4. 4.Unité de recherche Matériaux Avancés et Nanotechnologies (URMAN), Higher Institute of Applied Sciences and Technology of KasserineKairouan UniversityKasserineTunisia

Personalised recommendations