Advertisement

Magnetic Susceptibility of Cylindrical Quantum Dot with Aharonov-Bohm Flux: Simultaneous Effects of Pressure, Temperature, and Magnetic Field

  • Mahnaz Khosravi
  • Behrooz VaseghiEmail author
  • Kavoos Abbasi
  • Ghasem Rezaei
Original Paper
  • 19 Downloads

Abstract

Using canonical ensemble, we have studied the magnetic properties of a cylindrical GaAs quantum dot in this paper. The system is under the direct influence of external static electric and magnetic fields and an Aharonov-Bohm magnetic flux. Considering the temperature- and pressure-dependent effective parameters, the magnetic susceptibility is calculated and plotted in different regimes. Results clearly show the magnetic susceptibility, magnetic transition, and critical points strongly depend on temperature, pressure, and magnetic field. Moreover, Aharonov-Bohm magnetic flux has considerable effects on the magnetic susceptibility of the system.

Keywords

Magnetic susceptibility temperature Pressure Diamagnetism Paramagnetism Aharonov-Bohm flux 

Notes

References

  1. 1.
    Alivisatos, A.P.: Perspectives on the physical chemistry of semiconductor nanocrystals. Phys. Chem. 100, 13226 (1996)CrossRefGoogle Scholar
  2. 2.
    Bera, D., Qian, L., Tseng, T.K., Holloway, P.H.: Quantum dots and their multimodal applications: a review. Materials 3, 2260 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Zandi, O., Agrawal, A., Shearer, A.B., Gilbert, L.C., Dahlman, C.J., Staller, C.M., Milliron, D.J.: Impacts of surface depletion on the plasmonic properties of doped semiconductor nanocrystals. Nat. Mater. 17, 710 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    Yin, P., Yi Tan, H., Fang, M., Hegde, P.V.: Radovanovic, Plasmon-induced carrier polarization in semiconductor nanocrystals. Nanotechnology 13, 463 (2018)Google Scholar
  5. 5.
    Okada, K.: A theory of dielectric fluid films between nanostructures. Int. J. Eng. Sci. 112, 32 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cho, A.Y., Arhur, J.R.: Molecular beam epitaxy. Prog. Solid State Chem. 10, 157 (1975)CrossRefGoogle Scholar
  7. 7.
    Hosseynizadeh Khezri, S., Yazdani, A., Khordad, R.: Pure iron nanoparticles prepared by electric arc discharge method in ethylene glycol. Eur. Phys. J. Appl. Phys. 59, 30401 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Hersee, S., Duchemim, J.P.: Low-pressure chemical vapor deposition. Annu. Rev. Mater. Sci. 12, 65 (1982)ADSCrossRefGoogle Scholar
  9. 9.
    Reshma, V.G., Mohanan, P.V.: Quantum dots: applications and safety consequences. J. Lumin. 205, 287 (2019)CrossRefGoogle Scholar
  10. 10.
    Pu, Y., Cai, F., Wang, D., Wang, J.X., Chen, J.F.: Colloidal synthesis of semiconductor quantum dots toward large-scale production. Ind. Eng. Chem. Res. 57, 1790 (2018)CrossRefGoogle Scholar
  11. 11.
    Hong, Y., Zhao, D., Liu, D., Ma, B., Yao, G., Li, Q., Han, A., Qiu, M.: Three-dimensional in situ electron beam lithography using water ice. Nano Lett. 18, 5036 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    Schnauber, P., Schall, J., Bounouar, S., Hhne, T., Park, S.I., Ryu, G., Heindel, T., Burger, S., Song, J.D., Rodt, S., Reitzenstein, S.: Deterministic integration of quantum dots into on-chip multi-mode interference beamsplitters using in-situ electron beam lithography. Nano Lett. 18, 2336 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    Efros, A.L., Delehanty, J.B., Huston, A.L., Medintz, I.L., Barbic, M., Harris, T.D.: Evaluating the potential of using quantum dots for monitoring electrical signals in neurons. Nat. Nanotechnol. 13, 278 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    Zhou, Y., Zhao, H., Maa, D., Rosei, F.: Harnessing the properties of colloidal quantum dots in luminescent solar concentrators. Chem. Soc. Rev. 47, 5866 (2018)CrossRefGoogle Scholar
  15. 15.
    Geiregat, P., Houtepen, A.J., Kishore Sagar, L., Infante, I., Zapata, F., Grigel, V., Allan, G., Delerue, C., Van Thourhout, D., Hens, Z.: Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots. Nat. Mater. 17, 35 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    Chen, S., Ullah, N., Wang, T., Zhang, R., Mater, J.: Tuning the optical properties of graphene quantum dots by selective oxidation: a theoretical perspective. J. Mater. Chem. C 6, 6875 (2018)CrossRefGoogle Scholar
  17. 17.
    Vaseghi, B., Mohebi, N.: Effects of external fields, dimension and pressure on the electromagnetically induced transparency of quantum dots. J. Lumin. 134, 352 (2013)CrossRefGoogle Scholar
  18. 18.
    Karimi, B., Ramezanzadeh, B.: A comparative study on the effects of ultrathin Luminescent graphene oxide quantum dot (GOQD) and graphene oxide (GO) nanosheets on the interfacial interactions and mechanical properties of an epoxy composite. J. Colloid Interface Sci. 17, 30013 (2017)Google Scholar
  19. 19.
    Xiong, Y., Lu, X.: Metallic Nanostructures. Springer, Switzerland (2015)CrossRefGoogle Scholar
  20. 20.
    Nascimento, J.S., da Costa, D.R., Zarenia, M., Chaves, A., Pereira, J.M.: Magnetic properties of bilayer graphene quantum dots in the presence of uniaxial strain. Phys. Rev. B 96, 115428 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Maruyama, M., Okada, S.: Magnetic properties of graphene quantum dots embedded in h-BN sheet. J. Phys. Chem. C 120, 1293 (2016)CrossRefGoogle Scholar
  22. 22.
    Pei, L., Tao, S., Haibo, S., Song, X.: Electronic and magnetic properties of MoS2 quantum dots based on the first principles. Solid State Commun. 218, 25 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Manninen, M., Koskinen, M., Reimann, S.M., Mottelson, B.: Magnetic properties of quantum dots and rings. Eur. Phys. J. D 16, 381 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    Masrour, R., Jabar, A., Benyoussef, A., Hamedoun, M.: Ferromagnetic and antiferromagnetic order analysis of Fe- and FeO-modified graphene-nano-ribbon: a Monte Carlo simulation study. J. Magn. Magn. Mater. 395, 7 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Rkhioui, A., Masrour, R., Hlil, E.K., Benyoussef, A., Hamedoun, M., Bahmad, L.: Electronic and magnetic properties of Ga1−x M xA(M = Mn and Cr; A = As and N): Ab Initio study. J. Supercond. Nov. Magn. 28, 3419 (2015)CrossRefGoogle Scholar
  26. 26.
    Masrour, R., Rkhioui, A., Hlil, E.K., Hamedoun, M., Benyoussef, A., Bahmad, L.: Calculated Ab-Initio of Co-doped Zn1−xy A x B yO(A=Mo; B=Mn, Cr). J. Supercond. Nov. Magn. 28, 125 (2015)CrossRefGoogle Scholar
  27. 27.
    Rkhioui, A., Masrour, R., Hlil, E.K., Bahmad, L., Hamedoun, M., Benyoussef, A.: Study of electronic and magnetic properties of Zn1−x M xO (M = Mn and Cr) by ab initio calculations. J. Supercond. Nov. Magn. 26, 3469 (2013)CrossRefGoogle Scholar
  28. 28.
    Castano-Yepes, J.D., Ramirez-Gutierrez, C.F., Correa-Gallego, H., Gmez, E.A.: A comparative study on heat capacity, magnetization and magnetic susceptibility for a GaAs quantum dot with asymmetric confinement. Phys. E. 103, 464 (2018)CrossRefGoogle Scholar
  29. 29.
    Khordad, R.: Simultaneous effects of electron-electron interactions, Rashba spin-orbit interaction and magnetic field on susceptibility of quantum dots. J. Magn. Magn. Mater. 449, 510 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    Benhouria, Y., Bouziani, I., Essaoudi, I., Ainane, A., Ahuja, R.: Quantum Monte Carlo study of dynamic magnetic properties of nano-graphene. J. Magn. Magn. Mater. 460, 223 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    Masrour, R., Jabar, A.: Size and diluted magnetic properties of diamond shaped graphene quantum dots: Monte Carlo study. Phys. A J. Magn. Magn. Mater. 497, 211 (2018)Google Scholar
  32. 32.
    Baghdasaryan, D.A., Hayrapetyan, D.B., Kazaryan, E.M., Sarkisyan, H.A.: Thermal and magnetic properties of electron gas in toroidal quantum dot, Phys. E., 1 (2018)Google Scholar
  33. 33.
    Ikhdair, Sever, R.: Exact solutions of the D-dimensional Schrödinger equation for a ring-shaped pseudoharmonic potential. Cent. Eur. J Phys. 6, 685 (2008)Google Scholar
  34. 34.
    Sever, R., Tezcan, C., Bucurgat, M., Yesiltas, O.: Bound state solution of the schrödinger equation for Mie potential. J. Math. Chem. 43, 749 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Ikhdair, S.M., Hamzavi, M.: Spectral properties of quantum dots influenced by a confining potential model. Phys. B 407, 4797 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    Vaseghi, B., Rezaei, G., Sajadi, T.: Optical properties of parabolic quantum dots with dressed impurity: combined effects of pressure, temperature and laser intensity. Phys. B 456, 171 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    Liang, S., Xie, W.: Effects of the hydrostatic pressure and temperature on optical properties of a hydrogenic impurity in the disc-shaped quantum dot. Phys. B 406, 2224 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    Ben Mahrsia, R., Choubani, M., Bouzaiene, L., Maaref, H.: Nonlinear optical rectification in a vertically coupled lens-shaped InAs/GaAs quantum dots with wetting layers under hydrostatic pressure and temperature. J. Alloys Compd. 671, 200 (2016)CrossRefGoogle Scholar
  39. 39.
    Liu, H., Dong, Q., Lopez, R.: The effect of light intensity, temperature, and oxygen pressure on the photo-oxidation rate of bare PbS quantum dots. Nanomaterials 8, 341 (2018)CrossRefGoogle Scholar
  40. 40.
    Michler, P.: Single Semiconductor Quantum Dots. Springer, Berlin (2009)CrossRefGoogle Scholar
  41. 41.
    Ganguly, J., Saha, S., Bera, A., Ghosh, M.: Modulating optical rectification, second and third harmonic generation of doped quantum dots: Interplay between hydrostatic pressure, temperature and noise. Superlattices Microstruct. 98, 385 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    Harrison, P.: Quantum Wells, Wires and Dots. Wiley, England (2006)Google Scholar
  43. 43.
    Sali, A., Kharbach, J., Rezzouk, A., Ouazzani Jamil, M.: The effects of polaronic mass and conduction band non-parabolicity on a donor binding energy under the simultaneous effect of pressure and temperature basing on the numerical FEM in a spherical quantum dot. Superlattices Microstruct. 104, 93 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    Vaseghi, B., Rezaei, G., Malian, M.: Energy levels and electron g-factor of spherical quantum dots with Rashba spin-orbit interaction. Phys. Lett. A 375, 2747 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    Khordad, R.: Simultaneous effects of temperature and pressure on the donor binding energy in a V-groove quantum wire. Superlattices Microstruct. 47, 422 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    Kasapoglu, E., Ungan, F., Sari, H., Sokmen, I.: The hydrostatic pressure and temperature effects on donor impurities in cylindrical quantum wire under the magnetic field. Phys. E. 42, 1623 (2010)CrossRefzbMATHGoogle Scholar
  47. 47.
    Shi, L., Yan, Z.W.: Exciton bound to an ionized donor impurity in GaAs/Ga1−xAlxAs ellipsoidal finite-potential quantum dots under hydrostatic pressure. Solid State Commun. 151, 1907 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    Kazaryan, E.M., Meliksetyan, A.V., Petrosyan, L.S., Sarkisyan, H.A.: Impurity states of narrow-gap semiconductor parabolic quantum dot in the presence of extremely strong magnetic field. Phys. E. 31, 228 (2006)CrossRefGoogle Scholar
  49. 49.
    Pathria, R.K., Beale, P.D.: Statistical Mechanics. Elsevier, USA (2011)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mahnaz Khosravi
    • 1
  • Behrooz Vaseghi
    • 1
    Email author
  • Kavoos Abbasi
    • 1
  • Ghasem Rezaei
    • 1
  1. 1.Department of Physics, College of SciencesYasouj UniversityYasoujIran

Personalised recommendations