Advertisement

The Enhancement of Thermomagnetic Properties for BaFe12O19 by Trivalent Ion Substitutions

  • Adly H. El-Sayed
  • O. M. Hemeda
  • Mahmoud A. HamadEmail author
  • Ashraf M. Mohamed
Original Paper
  • 18 Downloads

Abstract

The effect of trivalent ions (Al3+, Bi3+, and Mn3+) substitutions on magnetocaloric effect (MCE) of M-type ferrite BaFe12O19 (BaM) has been investigated by a phenomenological model. It is shown that the presence of Al3+, Bi3+, and Mn3+ ions in BaM makes remarkable variations for MCE. It is concluded that MnBaFe11O19 is more practical than BaM, BiBaFe11O19, and AlBaFe11O19 due to a larger MCE, and its Curie temperature is closer to room temperature. MCE of BaM can be tuning with remarkable values by doping suitable ions.

Keywords

M-type ferrite BaFe12O19 Magnetocaloric effect Magnetic entropy change Heat capacity change 

Notes

References

  1. 1.
    Dhahri, N., Dhahri, A., Cherif, K., Dhahri, J., Belmabrouk, H., Dhahri, E.: J. Alloys Comp. 507(2), 405–409 (2010)CrossRefGoogle Scholar
  2. 2.
    Hamad MA. Investigations on Electrocaloric Properties of [111] oriented 0.955PbZn 1/3Nb2/3O3–0.045PbTiO3 single crystals. Phase Trans. 86, 307–314 (2013)Google Scholar
  3. 3.
    Hamad, M.A.: Theoretical Investigations on Electrocaloric Properties of (111)-Oriented PbMg1/3Nb2/3O3 Single Crystal. J. Adv. Ceram. 2, 308 (2013)Google Scholar
  4. 4.
    Hamad MA. Detecting Giant Electrocaloric Properties of Ferroelectric SbSI at Room Temperature. J Adv Dielect. 3, 1350008 (2013)Google Scholar
  5. 5.
    Hamad, M.A.: Theoretical investigations on electrocaloric properties of PbZr0.95Ti0.05O3 thin film. Int. J. Thermophys. 34, 1158–1165 (2013)Google Scholar
  6. 6.
    Hamad, M.A.: J. Supercond. Nov. Magn. 28, 3329–3333 (2015)CrossRefGoogle Scholar
  7. 7.
    Hamad, M.A.: Electrocaloric properties of Zr-modified Pb(Mg1/3Nb2/3)O3 polycrystalline ceramics. J. Adv. Dielect. 3, 1350029 (2013)Google Scholar
  8. 8.
    Hamad, M.A.: Giant isothermal entropy change in (111)-oriented PMN-PT thin film. J. Adv. Dielect. 4, 1450026 (2014)Google Scholar
  9. 9.
    Hamad, M.A.: Process. Appl. Ceram. 9, 11 (2015)CrossRefGoogle Scholar
  10. 10.
    Phan, M.H., Yu, S.C.: J.Magn. Magn. Mater. 308, 325 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Hamad, M.A.: Calculations of the low field magnetocaloric effect in Fe4MnSi3Bx. J. Supercond. Nov. Magn. 28, 2223 (2015)Google Scholar
  12. 12.
    Hamad, M.A.: J. Therm. Anal. Calorim. 115, 523 (2014)Google Scholar
  13. 13.
    Dhahri, A., Jemmali, M., Dhahri, E., Valente, M.A.: J.Alloy Compd. 638, 221 (2015)CrossRefGoogle Scholar
  14. 14.
    Dhahri, A., Dhahri, E., Hlil, E.K.: Applied Physics A. 116, 2077 (2014)CrossRefGoogle Scholar
  15. 15.
    El-Sayed, A.H., O. M. Hemeda, Hamad, M.A., Mohamed, A. M.: Thermomagnetic Properties of La0.67Sr0.33MnO3 Nanofibers. Eur. Phys. J. Plus 134, 227 (2019)Google Scholar
  16. 16.
    Hamad, M.A.: Monte Carlo calculations of magnetic heat capacity of La0.7Sr0.3−xMnO3−δ . J. Supercond. Nov. Magn. 28, 2525–2528 (2015)Google Scholar
  17. 17.
    Hamad, M.A.: J. Supercond. Nov. Magn. 31, 337 (2018)CrossRefGoogle Scholar
  18. 18.
    Hamad, M.A.: Process. Appl. Ceram. 10, 33 (2016)CrossRefGoogle Scholar
  19. 19.
    Mahmoud, K. R., Hemeda, O. M., Sharshar, T., & Hamad, M. A.: Strong Correlations Between Positron Annihilation Spectroscopy and ESR for Mn0.1MgxZn0.9-xFe2O4 Ceramics. M.A. J. Supercond. Nov. Magn 30, 3143–3154 (2017)Google Scholar
  20. 20.
    Salem, B. I., Hemeda, O. M., Mansour, S. F., & Hamad, M. A.: Electrical properties and positron annihilation studies for LaxCoFe2-xO4. Appl Phys A. 124, 621 (2018)Google Scholar
  21. 21.
    Pullar, R.C.: Prog. Mater. Sci. 57(7), 1191–1334 (2012)CrossRefGoogle Scholar
  22. 22.
    Hemeda, O. M., Mahmoud, K. R., Sharshar, T., Elsheshtawy, M., & Hamad, M. A.: ESR, thermoelectrical and positron annihilation Doppler broadening studies of CuZnFe2O4-BaTiO3 composite. J. Magn. Magn. Mater. 429, 124-128(2017)Google Scholar
  23. 23.
    Hemeda, O.M., Tawfik, A., El-Sayed, A.H., Hamad, M.A.: J. Supercond. Nov. Magn 28, 3629 (2015)Google Scholar
  24. 24.
    El-Sayed, A. H., Hemeda, O. M., Tawfik, A., & Hamad, M. A.: Superior values of the initial permeability for electrodeposited Ni–Co–P-BaFe12O19 composite films. Phase Trans. 90, 325–334 (2017)Google Scholar
  25. 25.
    El-Sayed, A. H., Hemeda, O. M., Tawfik, A., & Hamad, M. A. :Simulation of Wasp-Waisted Magnetic Hysteresis Loop for NiCoP-Coated BaFe 12 O 19–Polystyrene Bilayer Composite Film. J. Supercond. Nov. Magn. 29, 2451–2453 (2016)Google Scholar
  26. 26.
    El-Sayed, A.H., Hemeda, O.M., Tawfik, A., Hamad, M.A.: Remarkable magnetic enhancement of type-M hexaferrite of barium in polystyrene polymer. AIP Adv.5, 107131 (2015)Google Scholar
  27. 27.
    Hemeda, O. M., El-Sayed, A. H., Tawfik, A., & Hamad, M. A.: Improvement of the thermal properties of a polystyrene via inclusion of barium hexaferrite particles. Mater. Res. Exp. 3(7), 075302 (2016)Google Scholar
  28. 28.
    Nayak, D., Pattanayak, R., Raut, S., Panigrahi, S.: Applied Physics A. 124, 162 (2018)CrossRefGoogle Scholar
  29. 29.
    Tawfik, A., Hemeda, O.M., El-Sayed, A.H., Hamad, M.A.: Initial magnetic permeability of M type BaFe12O19-polystyrene composite. J. Supercond. Nov. Magn. 4, 2085–2088 (2016)Google Scholar
  30. 30.
    El-Sayed, A.H., Hemeda, O.M., Tawfik, A., et al.: J. Magn. Magn. Mater. 402, 105 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    Hamad, M.A., El-Sayed, A.H., Hemeda, O.M., et al.: Mater Res Exp. 3, 036104 (2016)CrossRefGoogle Scholar
  32. 32.
    Ghzaiel, T.B., Dhaoui, W., Pasko, A., Mazaleyrat, F.: J.Alloy Compd. 671, 245–253 (2016)CrossRefGoogle Scholar
  33. 33.
    Hamad, M.A.: Phase Trans. 85, 106 (2012)CrossRefGoogle Scholar
  34. 34.
    Hamad, M.A.: Phase Transit. 87, 460 (2014)CrossRefGoogle Scholar
  35. 35.
    Hamad, M.A.: J. Supercond. Nov. Magn. 29, 1539 (2016)CrossRefGoogle Scholar
  36. 36.
    Hamad, M.A.: J. Supercond. Nov. Magn. 28, 3365 (2015)CrossRefGoogle Scholar
  37. 37.
    Singhal, S., Namgyal, T., Singh, J., Chandra, K., Bansal, S.: Ceram. Int. 37, 1833 (2011)CrossRefGoogle Scholar
  38. 38.
    Osotchan, T., Thongmee, S., Tang, I.M., Thammasa: Int. J. Sci.Tech. 4, 54–58 (1999)Google Scholar
  39. 39.
    Fu, H., Zhai, H.R., Zhang, Y.C., Gu, B.X., Li, J.Y., Magn, J.: Magn. Mater. 905, 54–57 (1986)Google Scholar
  40. 40.
    Hamad, M.A.: Magnetocaloric effect in La1−xCexMnO3. J. Adv. Ceram. 4, 206–210 (2015)Google Scholar
  41. 41.
    El-Sayed, A.H., Hamad, M.A.: Magnetocaloric Effect in La1−xLixMnO3. J. Supercond. Nov. Magn. 31, 4167–4171 (2018)Google Scholar
  42. 42.
    Hamad, M.A.: Low magnetic field magnetocaloric effect in Gd5−xEuxGe4. J. Supercond. Nov. Magn. 29, 539–1543 (2016)Google Scholar
  43. 43.
    Hamad, M.A.: Theoretical work on effect of pressure on magnetocaloric properties of La0.7Ca0.3MnO3. Int. J. Thermophys. 36, 2748–2754 (2015)Google Scholar
  44. 44.
    Ewas, A.M., Hamad, M.A.: Large magnetocaloric effect of La0.67Pb0.33Mn1−xCoxO3 in small magnetic field variation. Ceram. Int. 43, 7660–7662 (2017)Google Scholar
  45. 45.
    Hamad, M.A.: Simulation of magnetocaloric properties of antiperovskite structural Ga1−XAlXCMn3. J. Supercond. Nov. Magn. 27, 2569 (2014)Google Scholar
  46. 46.
    Hamad, M.A.: Magnetocaloric effect in Sr0.4Ba1.6−xLaxFeMoO6. J. Supercond. Nov. Magn. 27, 1777 (2014)Google Scholar
  47. 47.
    Hamad, M.A.: Lanthanum concentration effect of magnetocaloric properties in LaxMnO3−δ. J. Supercond. Nov. Magn. 28, 173 (2015)Google Scholar
  48. 48.
    Hamad, M.A.: Magnetocaloric effect in Fe3.5Co66.5Si12−xGexB18 ribbons. J. Supercond. Nov. Magn. 29, 2867–2871 (2016)Google Scholar
  49. 49.
    Hamad, M.A.: Effects of addition of rare earth on magnetocaloric effect in Fe82Nb2B14. J. Supercond. Nov. Magn. 28, 3111–3115 (2015)Google Scholar
  50. 50.
    Hamad, M.A.: J. Supercond. Nov. Magn. 27, 263–267 (2014)Google Scholar
  51. 51.
    Hamad, M.A.: J. Supercond. Nov. Magn. 27, 269–272 (2014)Google Scholar
  52. 52.
    El-Sayed, A.H., Hamad, M.A.: Tailoring thermomagnetic properties in Pb (Zr0.52Ti0.48)O3–Ni (1−x)ZnxFe2O4. Phase Trans. 92, 517–524 (2019)Google Scholar
  53. 53.
    El-Sayed, A.H., Hamad, M.A.: Nickle Concentration Effect on Low Magnetic Field Magnetocaloric Properties for Ni2+xMn1−xGe. J. Supercond. Nov. Magn. 32, 1447–1450 (2019)Google Scholar
  54. 54.
    El-Sayed, A.H., Hamad, M.A.: Strong correlation between the magnetocaloric properties of nanotubes of La0.325Pr0.3Ca0.375MnO3 and their diameters δ. J. Supercond. Nov. Magn. 31, 4091–4094 (2018)Google Scholar
  55. 55.
    Hamad, M.A.: Process. Appl. Ceram. 11, 225–229 (2017)Google Scholar
  56. 56.
    El-Sayed, A.H., Hamad, M.A.: J. Supercond. Nov. Magn. 31, 1895 (2018)Google Scholar
  57. 57.
    El-Sayed, A.H., Hamad, M.A.: Phenomenological modeling of magnetocaloric effect for in La0.7SrxMnO3−δ. J. Supercond. Nov. Magn. 31, 3357–3360 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  2. 2.Physics Department, Faculty of ScienceTanta UniversityTantaEgypt
  3. 3.Physics and Chemistry Department, Faculty of EducationMatrouh UniversityMatrouhEgypt
  4. 4.Basic Science Department, Higher Institute of Engineering & TechnologyKing Marriott AcademyAlexandriaEgypt
  5. 5.Applied Organic Chemistry DepartmentNational Research CentreCairoEgypt

Personalised recommendations