Advertisement

Theoretical Investigation of Superconducting State Parameters of Some Bulk Metallic Glasses Using Pseudopotential Approach

  • Aditya M. VoraEmail author
  • Alkesh L. Gandhi
Original Paper
  • 9 Downloads

Abstract

The pseudopotential-based formulation suggested by MacMillan utilized for computing the five most important superconducting state parameters (SSPs) given by electron–phonon coupling strength λ, Coulomb pseudopotential μ, transition temperature TC, isotope effect exponent α, and effective interaction strength NOV of 20 bulk metallic glasses (BMGs) having the range of binary to hexanary combinations made from simple and non-simple metallic elements for the first time are reported in the present study. Shaw’s constant core pseudopotential with five different types of local field functions given by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) are used in the present calculation for seeing the screening impacts on the abovementioned parameters. It is also observed from the present study that two parameters λ and TC are shown quite sensitive to the local field functions in contrast with the other three parameters. Also, the present outcomes support the superconducting nature in the considered BMG systems.

Keywords

Superconducting state parameters Pseudopotential Local field functions Bulk metallic glasses (BMGs) 

Notes

Acknowledgments

The computer facility established under DST-FIST programme from DST, Government of India, New Delhi, India and financial assistance under DRS-SAP-I & II from UGC, New Delhi, India are acknowledged by the author (AMV).

References

  1. 1.
    Vora, A.M., Gajjar, P.N.: Theoretical investigation of superconducting state parameters of Fe X Zr 1 − X metallic glasses. Mater. Today: Proc. (2019) in pressGoogle Scholar
  2. 2.
    Vora, A.M.: Superconducting state parameters of BMG superconductors. J. Supercond. Nov. Magn. 28, 2293–2297 (2015)CrossRefGoogle Scholar
  3. 3.
    Dave, H.P., Malan, R.C., Vora, A.M.: Screening dependence study of superconducting state parameters of 4d-and 5d-transition metals based binary alloys. Acta Phys. Pol. A133, 86–93 (2018)CrossRefGoogle Scholar
  4. 4.
    Vora, A.M.: Theoretical investigation of superconducting state parameters of bulk metallic glasses. In: Ashutosh, T., Demir Mustafa, M. (eds.) Advanced sensor and detection material, pp. 447–472. Scrivener Publishing LLC (Wiley), MA (2014)Google Scholar
  5. 5.
    McMillan, W.L.: Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331–344 (1968)ADSCrossRefGoogle Scholar
  6. 6.
    Brinson, L.G., Knauss, W.G.: Thermorhologically complex behavior of multiphase viscoelastic materials. J. Mech. Phys. Sol. 39, 859–880 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    Parks, D.M., van Dommelen, J.A.W., Boyce, M.C., Baaijens, F.P.T., Brekelmans, W.A.M.: Micromechanical modeling of finite elasto-visco plastic deformation in semi-crystalline polymers. Abstr. Pap. Am. Chem. Soc. 223, D92 (2002)Google Scholar
  8. 8.
    Sheng, N., Boyce, M.C., Parks, D.M., Rutledge, G.C., Abes, J.I., Cohen, R.E.: Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. Polymer. 45, 487–506 (2004)CrossRefGoogle Scholar
  9. 9.
    Anand, L., Su, C.: A theory for amorphous viscoplastic materials undergoing finite deformations, with application to metallic glasses. J. Mech. Phys. Sol. 53, 1362–1396 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Yang, Q., Mota, A., Ortitz, M.: A finite-deformation constitutive model of bulk metallic glass plasticity. Comp. Mech. 37, 194–204 (2006)ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    Johnson, W.L., Lu, J., Demetriou, M.D.: Deformation and flow in bulk metallic glasses and deeply undercooled glass forming liquids-a self-consistent dynamic free volume model. Intermetallics. 10, 1039–1046 (2002)CrossRefGoogle Scholar
  12. 12.
    Huang, R., Suo, Z., Prevost, J.H., Nix, W.D.: Inhomogeneous deformation in metallic glasses. J. Mech. Phys. Sol. 50, 1011–1027 (2002)ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    Falk, M.L., Langer, J.S., Pechenik, L.: Thermal effects in the shear-transformation zone theory of amorphous plasticity: comparisons to metallic glass data. Phys. Rev. E. 70, 011507 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Onn, D.G., Wang, L.Q., Fukamichi, K.: Superconductivity in Fe-Zr, Ni-Zr and Cu-Zr amorphous metal alloys: analysis of low temperature specific heat. Solid State Commun. 47, 479–483 (1983)ADSCrossRefGoogle Scholar
  15. 15.
    Altounian, Z., Strom-Olsen, J.O.: Superconductivity and spin fluctuations in M-Zr metallic glasses (M =Cu, Ni, Co, and Fe). Phys. Rev. B. 27, 4149–4156 (1983)ADSCrossRefGoogle Scholar
  16. 16.
    Carbotte, J.P.: Properties of boson-exchange superconductors. Rev. Mod. Phys. 62, 1027–1157 (1990)ADSCrossRefGoogle Scholar
  17. 17.
    Okai, D., Motoyama, G., Kimura, H., Inoue, A.: Supercoducting property of Zr-Cu-Al-Ni-Nb alloys. Phys. Procedia. 27, 56–59 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Okai, D., Nagai, R., Motoyama, G., Kimura, H.M., Inoue, A.: Superconducting property of Zr–Co–Al–Nb metallic glasses. Physica C. 471, 725–729 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Hamed, F.: Superconductivity in amorphous and fully crystallized Ni-Fe-Zr metallic glasses. Am. J. Mater. Sci. Eng. 1, 24–28 (2013)Google Scholar
  20. 20.
    Li, Y., Bai, H.Y., Wen, P., Liu, Z.X., Zhao, Z.F.: Superconductivity of bulk Zr46.75Ti8.25Cu7.5Ni10Be27.5 metallic glass. J. Phys. Condens. Matter. 15, 4809–4815 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Li, Y., Bai, H.Y.: Superconductivity in a representative Zr-based bulk metallic glass. J. Non-Cryst. Sol. 351, 2378–2382 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Karki Amar, B., Ovidiu Garlea, V., Radu, C., Shane, S., Plummer, E.W., Rongying, J.: Interplay between superconductivity and magnetism in Fe1−xPdxTe. PNAS. 110, 9283–9288 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Wolowieca, C.T., Whitea, B.D., Maplea, M.B.: Conventional Magnetic Superconductors. 514, 113 (2005).  https://doi.org/10.1016/j.physc.2015.02.050
  24. 24.
    Altounian, Z., Ryan, D.H.: Magnetic and thermal properties of (NdxFe1-x)82.5B17.5 glasses. Mater. Sci. Eng. 99, 157–159 (1988)CrossRefGoogle Scholar
  25. 25.
    Blamire, M.G., Robinson, J.W.A.: The interface between superconductivity and magnetism: understanding and device prospects. J. Phys. Condens. Matter. 26, 453201 (13pp) (2014)ADSCrossRefGoogle Scholar
  26. 26.
    El, A.M., Destry, J., Cochrane, R.W.: The influence of hydrostatic pressure on the superconducting transition temperature and critical field in the amorphous binary metallic alloys M-Zr (M - Fe, Co or Ni). Mater. Sci. Eng. 99, 309–311 (1988)CrossRefGoogle Scholar
  27. 27.
    Tafra, E., Basletić, M., Ristić, R., Babić, E., Hamzić, A.: Enhanced superconductivity in Hf–base metallic glasses. J. Phys. Condens. Matter. 20, 425215 (09pp) (2008)CrossRefGoogle Scholar
  28. 28.
    Herlach, D.M., Kaiser, A.B., Kastner, J.: Low-temperature thermal and electrical resistivity in a Pd-Cu-Si metallic glass. Mater. Sci. Eng. 99, 231–233 (1988)CrossRefGoogle Scholar
  29. 29.
    Suryanarayana, C., Inoue, A.: Iron-based bulk metallic glasses. Inter. Mater. Rev. 58, 131–166 (2013)CrossRefGoogle Scholar
  30. 30.
    Harrison, W.A.: Elementary electronic structure. World Scientific, Singapore (1999)CrossRefGoogle Scholar
  31. 31.
    Taylor, R.: A simple, useful analytical form of the static electron gas dielectric function. J. Phys. F Met. Phys. 8, 1699–1702 (1978)ADSCrossRefGoogle Scholar
  32. 32.
    Ichimaru, S., Utsumi, K.: Analytic expression for the dielectric screening function of strongly coupled electron liquids at metallic and lower densities. Phys. Rev. B. 24, 7385–7388 (1981)ADSCrossRefGoogle Scholar
  33. 33.
    Farid, B., Heine, V., Engel, G., Robertson, I.J.: Extremal properties of the Harris-Foulkes functional and an improved screening calculation for the electron gas. Phys. Rev. B. 48, 11602–11621 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    Sarkar, A., Sen, D., Haldar, H., Roy, D.: Static local field factor for dielectric screening function of electron gas at metallic and lower densities. Mod. Phys. Lett. B. 12, 639–648 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    Shaw Jr., R.W.: Optimum form of a modified Heine-Abarenkov model potential for the theory of simple metals. Phys. Rev. 174, 769–781 (1968)ADSCrossRefGoogle Scholar
  36. 36.
    Butler, W.H.: Electron-phonon coupling in the transition metals: electronic aspects. Phys. Rev. B. 15, 5267–5282 (1977)ADSCrossRefGoogle Scholar
  37. 37.
    Hopfield, J.J.: Angular momentum and transition-metal superconductivity. Phys. Rev. 186, 443–451 (1969)ADSCrossRefGoogle Scholar
  38. 38.
    Gaspari, G.D., Gyorff, B.L.: Phys. Rev. Lett. 28, 801 (1972)ADSCrossRefGoogle Scholar
  39. 39.
    Kovalenko, N.P., Krasny Yu, P., Krey, U.: Physics of amorphous metals. Wiley-VCH, Berlin (2001)CrossRefGoogle Scholar
  40. 40.
    Moral, P., Anderson, P.W.: Calculation of the superconducting state parameters with retarded electron-phonon interaction. Phys. Rev. 125, 1263–1271 (1962)ADSCrossRefGoogle Scholar
  41. 41.
    Rajput, J.S., Gupta, A.K.: Superconductivity in nontransition metals. I. Phys. Rev. 181, 743–752 (1969)ADSCrossRefGoogle Scholar
  42. 42.
    Allen, P.B., Cohen, M.L.: Pseudopotential calculation of the mass enhancement and superconducting transition temperature of simple metals. Phys. Rev. 187, 525–538 (1969)ADSCrossRefGoogle Scholar
  43. 43.
    Hasegawa, R., Tanner, L.E.: Superconducting properties of Be-Zr glassy alloys obtained by liquid quenching. Phys. Rev. B. 16, 3925–3928 (1977)ADSCrossRefGoogle Scholar
  44. 44.
    Hasegawa, R.: Glassy metals: magnetic, chemical and structural properties. CRC Press, Florida (1980)Google Scholar
  45. 45.
    Matthias, B.T.: Criteria for superconducting transition temperatures. Physica. 69, 54–56 (1973)ADSCrossRefGoogle Scholar
  46. 46.
    Poole Jr., C.P., Farach, H.A., Creswick, R.J.: Handbook of superconductivity, 2nd edn. Academic Press, Inc, Amsterdam (2007)Google Scholar
  47. 47.
    Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Microscopic theory of superconductivity. Phys. Rev. 106, 162–164 (1957)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity School of Sciences, Gujarat UniversityAhmedabadIndia
  2. 2.Department of Physics, B. V. Shah (Vadi Vihar) Science CollegeC. U. Shah UniversityWadhwancityIndia

Personalised recommendations