Effects of Annealing Temperature on Phase Transformation of CoTiO3 Nanoparticles and on their Structural, Optical, and Magnetic Properties

  • M. Chandra Sekhar
  • B. Purusottam Reddy
  • B. Poorna Prakash
  • Si-Hyun ParkEmail author
Original Paper


Cobalt titanate (CoTiO3) nanoparticles have been prepared by annealing of precursor molecules obtained from a mixture of titanium isopropoxide with cobalt nitrate and glacial acetic acid by sol-gel method. The structural properties of nanoparticles were investigated by X-ray diffraction (XRD) and Raman spectroscopy to determine the phase composition and crystallite size. The optical properties of the nanoparticles were characterized by UV-Vis absorption spectra. XRD and Raman analysis confirmed that CoTiO3 phase was present at annealing temperatures above 700 °C. For the investigation of the elemental compositions and chemical binding configurations, the samples were analyzed by X-ray photoelectron spectroscopy (XPS). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to analyze the morphology and particle sizes and were found to be between 70 and 90 nm. The samples annealed at temperatures equal or higher than 600 °C exhibited paramagnetic behavior, whereas those annealed at or above 700 °C exhibited superparamagnetic behavior as shown by vibrating sample magnetometer at room temperature.


Cobalt titanate Annealing temperature Structure Magnetic properties 



  1. 1.
    Jiang, J., Luo, J., Zhu, J., Huang, X., Liu, J., Yu, T.: Diffusion-controlled evolution of core–shell nanowire arrays into integrated hybrid nanotube arrays for Li-ion batteries. Nanoscale. 5, 8105–8113 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    Chu, X., Liu, X., Wang, G., Meng, G.: Preparation and gas-sensing properties of nano-CoTiO3. Mater Res Bull. 34, 1789–1795 (1999)Google Scholar
  3. 3.
    Schoofs, F., Egilmez, M., Fix, T., MacManus-Driscoll, J.L.: Structural and magnetic properties of CoTiO3 thin films on SrTiO3 (001). J Magn Magn Mater. 332, 67–70 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Agafonov, A., Vinogradov, A.: Catalytically active materials based on titanium dioxide: ways of enhancement of photocatalytic activity. High Energy Chem. 42, 578–580 (2008)CrossRefGoogle Scholar
  5. 5.
    Rajeshwar, K., Chenthamarakshan, C.R., Goering, S., Djukic, M.: Titania-based heterogeneous photocatalysis. Materials, mechanistic issues, and implications for environmental remediation. Pure Appl Chem. 73, 1849–1860 (2001)CrossRefGoogle Scholar
  6. 6.
    Alhakimi, G., Studnicknib, L.H., AlGhazalic, M.: Photocatalytic destruction of potassium hydrogen phthalate using TiO2 and sunlight: application for the treatment of industrial wastewater. J Photochem Photobiol A Chem. 154, 219–228 (2003)CrossRefGoogle Scholar
  7. 7.
    Nalwa, H.S.: Handbook of Advanced Electronic and Photonic Materials and Devices. Academic Press, San Diego (2001)Google Scholar
  8. 8.
    Mathur, S., Veith, M., Shen, H., Hufner, S., Jilavi, M.H.: Structural and optical properties of NdAlO3 nanocrystals embedded in an Al2O3 matrix. Chem Mater. 14, 568–582 (2002)CrossRefGoogle Scholar
  9. 9.
    Zou, J., Zheng, W.: TiO2@CoTiO3 complex green pigments with low cobalt content and tunable color properties. Ceram Int. 42, 8198–8205 (2016)Google Scholar
  10. 10.
    Lu, J., Jiang, Y., Zhang, Y., Huang, J., Xu, Z.: Preparation of gas sensing CoTiO3 nanocrystallites using EDTA as the chelating agent in a sol-gel process. Ceram Int. 41, 3714–3721 (2015)CrossRefGoogle Scholar
  11. 11.
    Cullity, B.D.: Introduction to Magnetic Materials, p. xvii. Addison-Wesley Pub. Co., Reading, Mass (1972) 666Google Scholar
  12. 12.
    Sahoo, Y., Cheon, M., Wang, S.H., Luo, E.P., Furlani, Prasad, P.N.: Field-directed self-assembly of magnetic nanoparticles. J Phys Chem B. 108(11), 3380–3383 (2004)CrossRefGoogle Scholar
  13. 13.
    Enhessari, M., Parviz, A., Ozaee, K., Karamali, E.: Magnetic properties and heat capacity of CoTiO3 nanopowders prepared by stearic acid gel method. J Exp Nanosci. 5, 61–68 (2010)CrossRefGoogle Scholar
  14. 14.
    Abedini, A., Khademolhoseini, S.: Cobalt titanate nanoparticles: Synthesis, characterization, optical and photocatalytic properties. J Mater Sci Mater Electron. 27, 330–334 (2016)CrossRefGoogle Scholar
  15. 15.
    Gabal, M.A., Hameed, S.A., Obaid, A.Y.: CoTiO3 via cobalt oxalate–TiO2 precursor synthesis and characterization. Mater Charact. 71, 87–94 (2012)Google Scholar
  16. 16.
    Anjana, P.S., Sebastianw, M.T.: Synthesis, characterization, and microwave di-electric properties of ATiO3 (A= Co, Mn, Ni) ceramics. J Am Ceram Soc. 89, 2114–2117 (2006)Google Scholar
  17. 17.
    Zhou, G.W., Lee, D.K., Kim, Y.H., Kim, C.W., Kang, Y.S.: Preparation and spectro-scopic characterization of ilmenite-type CoTiO3 nanoparticle. Bull Kor Chem Soc. 27, 368–372 (2006)CrossRefGoogle Scholar
  18. 18.
    Yang, G., Yan, W., Wang, J., Yang, H.: Fabrication and characterization of CoTiO3 nanofibers by sol–gel assisted electrospinning. Mater Lett. 122, 117–120 (2014)CrossRefGoogle Scholar
  19. 19.
    Lin, A., Yu, K.Y., Lin, T.: Degradation of acid azo dyes using oxone activated by cobalt titanate perovskite. Water Air Soil Pollut. 229, 10 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    Chuang, S.H., Gao, R.H., Gao, K.H., Chiang, M.Y., Chao, T.S.: Formation of structural characterization of cobalt titanate thin films. J Chin Chem Soc. 57, 1022–1026 (2010)CrossRefGoogle Scholar
  21. 21.
    Yadav, M.K., Kothari, A.V., Gupta, V.K.: Preparation and characterization of bi-and trimetallic titanium based oxides. Dyes Pigments. 89, 149–154 (2011)CrossRefGoogle Scholar
  22. 22.
    Zhou, G.W., Lee, D.K., Kim, Y.H., Kim, C.W., Kang, Y.S.: Preparation and spectroscopic characterization of ilmenite-type CoTiO3 nanoparticles. Bull Kor Chem Soc. 27, 368–372 (2006)CrossRefGoogle Scholar
  23. 23.
    Brik, Y., Kacimi, M., Ziyad, M., Bozon-Verduraz, F.: Titania-supported cobalt and cobalt–phosphorus catalysts: characterization and performances in ethane Oxidative dehydrogenation. J Catal. 202, 118–128 (2001)CrossRefGoogle Scholar
  24. 24.
    Coey, J.M.D., Venkatesan, M., Fitzgerald, C.B.: Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater. 4, 173 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsMadanapalle Institute of Technology & ScienceMadanapalleIndia
  2. 2.Department of Electronic EngineeringYeungnam UniversityGyeongsan-SiRepublic of Korea

Personalised recommendations