Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 12, pp 3979–3986 | Cite as

Effects of Dy Doping on the Electrical Transport and Magnetic Properties of the Pyrochlore Iridate Bi2Ir2O7

  • Yuan Feng
  • Jian Bian
  • Shiyun Chen
  • Baolong Fang
  • Wei Tong
  • Hui LiuEmail author
Original Paper


In the present paper, we report the structural, electrical, and magnetic properties of Bi2-xDyxIr2O7 (x = 0, 0.5, 1.0, 1.5, 2.0) polycrystalline. Raman scattering spectra show the variation of active mode with doping induced by the changes of bond strength and the ionic masses. The resistivity behaviors show that the substitution of dysprosium significantly enhances the electrical resistance and presents a metal-insulator transition at about 60 K for the x = 1.5 samples. Fitted data of metallic regions indicate the importance of grain boundary effects while transport mechanism of insulating regions changes from thermal activation to variable range hopping model. Magnetic measurements suggest predominantly antiferromagnetic (AFM) interaction. With increasing content of Dy, the AFM interactions increase at first and then decrease, resulting from the competition among AFM Ir-Ir, AFM Ir-Dy, and ferromagnetic (FM) Dy-Dy interactions.


Doped iridate Metal-insulator transition Grain boundary effects Magnetic properties 



We acknowledge the use of electron spin resonance facilities at the High Magnetic Field Laboratory, Chinese Academy of Sciences at Hefei.

Funding Information

This work was supported by the Natural Science Foundation of China (Grant No. 11604071), Natural Science Foundation of the Education Department of Anhui Province (Grant Nos. KJ2016SD49, KJ2017A548, 2016jyxm0864, and 2016jyxm0865), and Natural Science Foundation of Hefei University (Grant Nos. 18ZR13ZDA and 2016dtr02).


  1. 1.
    Hughes, T.L., Prodan, E., Bernevig, B.A.: Inversion-symmetric topological insulators. Phys. Rev. B. 83, 245132 (2011)Google Scholar
  2. 2.
    Turner, A.M., Zhang, Y., Mong, R.S.K., Vishwanath, A.: Quantized response and topology of magnetic insulators with inversion symmetry. Phys. Rev. B. 85, 165120 (2012)Google Scholar
  3. 3.
    Wan, X., Turner, A.M., Vishwanath, A., Savrasov, S.Y.: Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B. 83, 205101 (2011)Google Scholar
  4. 4.
    Witczak-Krempa, W., Kim, Y.B.: Topological and magnetic phases of interacting electrons in the pyrochlore iridates. Phys. Rev. B. 85, 045124 (2012)Google Scholar
  5. 5.
    Pesin, D., Balents, L.: Mott physics and band topology in materials with strong spin–orbit interaction. Nat. Phys. 6, 376–381 (2010)CrossRefGoogle Scholar
  6. 6.
    Yang, B.-J., Kim, Y.B.: Topological insulators and metal-insulator transition in the pyrochlore iridates. Phys. Rev. B. 82, 085111 (2010)Google Scholar
  7. 7.
    Savary, L., Balents, L.: Coulombic quantum liquids in spin-1/2 pyrochlores. Phys. Rev. Lett. 108, 037202 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Lee, Y.S., Moon, S.J., Riggs, S.C., Shapiro, M.C., Fisher, I.R., Fulfer, B.W., Chan, J.Y., Kemper, A.F., Basov, D.N.: Infrared study of the electronic structure of the metallic pyrochlore iridate Bi2Ir2O7. Phys. Rev. B. 87, 195143 (2013)Google Scholar
  9. 9.
    Baker, P.J., Möller, J.S., Pratt, F.L., Hayes, W., Blundell, S.J., Lancaster, T., Qi, T.F., Cao, G.: Weak magnetic transitions in pyrochlore Bi2Ir2O7. Phys. Rev. B. 87, 180409 (2013)Google Scholar
  10. 10.
    Kim, B.J., Jin, H., Moon, S.J., Kim, J.Y., Park, B.G., Leem, C.S., Yu, J., Noh, T.W., Kim, C., Oh, S.J., Park, J.H., Durairaj, V., Cao, G., Rotenberg, E.: Novel Jeff=1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4. Phys. Rev. Lett. 101, 076402 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Matsuhira, K., Wakeshima, M., Nakanishi, R., Yamada, T., Nakamura, A., Kawano, W., Takagi, S., Hinatsu, Y.: Metal–insulator transition in pyrochlore iridates Ln2Ir2O7(Ln= Nd, Sm, and Eu). J. Phys. Soc. Jpn. 76, 043706 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Matsuhira, K., Wakeshima, M., Hinatsu, Y., Takagi, S.: Metal–insulator transitions in pyrochlore oxides Ln2Ir2O7. J. Phys. Soc. Jpn. 80, 094701 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Witczak-Krempa, W., Chen, G., Kim, Y.B., Balents, L.: Correlated quantum phenomena in the strong spin-orbit regime. Ann. Rev. Condens. Matter Phys. 5, 57–82 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Qi, T.F., Korneta, O.B., Wan, X., DeLong, L.E., Schlottmann, P., Cao, G.: Strong magnetic instability in correlated metallic Bi2Ir2O7. J. Phys. Condens. Matter. 24, 345601 (2012)CrossRefGoogle Scholar
  15. 15.
    Yanagishima, Y.M.D.: Metal-nonmetal changeover in pyrochlore iridates.pdf. J. Phys. Soc. Jpn. 70, 2880–2883 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Gupta, H.C., Singh, J., Kumar, S., Karandeep, N.R.: A lattice dynamical investigation of the Raman and the infrared frequencies of the Dy2Ti2O7 pyrochlore spin ice compound. J. Mol. Struct. 937, 136–138 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Sanjuán, M.L., Guglieri, C., Díaz-Moreno, S., Aquilanti, G., Fuentes, A.F., Olivi, L., Chaboy, J.: Raman and x-ray absorption spectroscopy study of the phase evolution induced by mechanical milling and thermal treatments inR2Ti2O7pyrochlores. Phys. Rev. B. 84, 104207 (2011)Google Scholar
  18. 18.
    Liu, H., Liang, D., Chen, S., Bian, J., Feng, Y., Fang, B.: Evolution of magnetic and transport properties in pyrochlore iridates A2Ir2O7 (A=Y, Eu, Bi). Wuhan Univ. J. Nat. Sci. 22, 215–222 (2017)CrossRefGoogle Scholar
  19. 19.
    D. Liang, H. Liu, N. Liu, L. Ling, Y. Han, L. Zhang, C. Zhang, Structural, magnetic and electrical properties in the pyrochlore oxide Bi 2−x Ca x Ir 2 O 7−δ. Ceram. Int., 42: 4562–4566 (2016)Google Scholar
  20. 20.
    Arenas, D.J., Gasparov, L.V., Qiu, W., Nino, J.C., Patterson, C.H., Tanner, D.B.: Raman study of phonon modes in bismuth pyrochlores. Phys. Rev. B. 82, 214302 (2010)Google Scholar
  21. 21.
    Hector, A.L., Wiggin, S.B.: Synthesis and structural study of stoichiometric Bi2Ti2O7 pyrochlore. J. Solid State Chem. 177, 139–145 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    Han, H., Zhang, L., Liu, H., Ling, L., Tong, W., Zou, Y., Ge, M., Fan, J., Zhang, C., Pi, L., Zhang, Y.: Electron paramagnetic resonance study of the f–d interaction in pyrochlore iridate Gd2Ir2O7. Philos. Mag. 95, 3014–3022 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Hasegawa, T., Ogita, N., Matsuhira, K., Takagi, S., Wakeshima, M., Hinatsu, Y., Udagawa, M.: Raman scattering study in iridium pyrochlore oxides. J. Phys. Conf. Ser. 200, 012054 (2010)CrossRefGoogle Scholar
  24. 24.
    Saha, S., Muthu, D.V.S., Pascanut, C., Dragoe, N., Suryanarayanan, R., Dhalenne, G., Revcolevschi, A., Karmakar, S., Sharma, S.M., Sood, A.K.: High-pressure Raman and x-ray study of the spin-frustrated pyrochloreGd2Ti2O7. Phys. Rev. B. 74, 064109 (2006)Google Scholar
  25. 25.
    Brown, S., Gupta, H.C., Alonso, J.A., Martinez-Lope, M.J.: Vibrational spectra and force field calculation of A2Mn2O7 (A = Y, Dy, Er, Yb) pyrochlores. J. Raman Spectrosc. 34, 240–243 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    Gupta, S.B.H.C., Rani, N., Gohel, V.B.: A lattice dynamical investigation of the Raman and the infrared frequencies of the cubic A2Hf2O7 pyrochlores. J. Phys. Chem. Solids. 63, 535 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    Hinojosa, B.B., Nino, J.C., Asthagiri, A.: First-principles study of cubic Bi pyrochlores. Phys. Rev. B. 77, 104123 (2008)Google Scholar
  28. 28.
    Disseler, S.M., Dhital, C., Amato, A., Giblin, S.R., de la Cruz, C., Wilson, S.D., Graf, M.J.: Magnetic order in the pyrochlore iridates A2Ir2O7 (A= Y, Yb). Phys. Rev. B. 86, 014428 (2012)Google Scholar
  29. 29.
    Ishikawa, J.J., O’Farrell, E.C.T., Nakatsuji, S.: Continuous transition between antiferromagnetic insulator and paramagnetic metal in the pyrochlore iridate Eu2Ir2O7. Phys. Rev. B. 85, 245109 (2012)Google Scholar
  30. 30.
    Ueda, K., Fujioka, J., Takahashi, Y., Suzuki, T., Ishiwata, S., Taguchi, Y., Tokura, Y.: Variation of charge dynamics in the course of metal-insulator transition for pyrochlore-type Nd2Ir2O7. Phys. Rev. Lett. 109, 136402 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Zhang, H., Haule, K., Vanderbilt, D.: Metal-insulator transition and topological properties of pyrochlore iridates. Phys. Rev. Lett. 118, 026404 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751 (1976)CrossRefGoogle Scholar
  33. 33.
    Liu, W., Han, H., Ma, L., Pi, L., Zhang, L., Zhang, Y.: Different pressure effects in A 2 Ir 2 O 7 (A = Gd, Eu, and Sm). J. Alloys Compd. 741, 182–187 (2018)CrossRefGoogle Scholar
  34. 34.
    Prando, G., Dally, R., Schottenhamel, W., Guguchia, Z., Baek, S.H., Aeschlimann, R., Wolter, A.U.B., Wilson, S.D., Büchner, B., Graf, M.J.: Influence of hydrostatic pressure on the bulk magnetic properties of Eu2Ir2O7. Phys. Rev. B. 93, 104422 (2016)Google Scholar
  35. 35.
    Zghal, E., Koubaa, M., Berthet, P., Sicard, L., Cheikhrouhou-Koubaa, W., Decorse-Pascanut, C., Cheikhrouhou, A., Ammar-Merah, S.: Magneto-transport properties of La0.75Ca0.15Sr0.1MnO3 with YBa2Cu3O7–δ addition. J. Magn. Magn. Mater. 414, 97–104 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    Neeraj Panwar, V.S., Pandy, D.K., Agarwal, S.K.: Grain boundary effects on the electrical and magnetic properties of Pr2/3Ba1/3MnO3 and La2/3Ca1/3MnO3 manganites. Mater. Lett. 61, 4879 (2007)CrossRefGoogle Scholar
  37. 37.
    Cosio-Castaneda, C., de la Mora, P., Tavizon, G.: Synthesis and structural analysis of Bi2−ySryIr2O7, a new pyrochlore solid solution. J. Solid State Chem. 184, 1251–1256 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    Matsuhira, K., Wakeshima, M., Hinatsu, Y., Sekine, C., Paulsen, C., Sakakibara, T., Takagi, S.: Slow dynamics of Dy pyrochlore oxides Dy2Sn2O7and Dy2Ir2O7. J. Phys. Conf. Ser. 320, 012050 (2011)CrossRefGoogle Scholar
  39. 39.
    Disseler, S.M., Dhital, C., Hogan, T.C., Amato, A., Giblin, S.R., de la Cruz, C., Daoud-Aladine, A., Wilson, S.D., Graf, M.J.: Magnetic order and the electronic ground state in the pyrochlore iridate Nd2Ir2O7. Phys. Rev. B. 85, 174441 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and PhysicsHefei UniversityHefeiChina
  2. 2.Analytical and Testing CenterHefei UniversityHefeiChina
  3. 3.High Magnetic Field LaboratoryChinese Academy of SciencesHefeiChina

Personalised recommendations