Synthesis and Characterization of Tea Polyphenol–Coated Magnetite Nanoparticles for Hyperthermia Application

  • Lavita Sarma
  • J. P. Borah
  • A. Srinivasan
  • Sidananda SarmaEmail author
Original Paper


Tea polyphenol–coated magnetite nanoparticles were evaluated for hyperthermia application. Polyphenol extracted from the tea leaves was used as a reducing and capping agent for the synthesis of good-quality mono-dispersed magnetite nanoparticles from an iron hydroxide solution. The as-synthesized samples were found to be mostly single-phase magnetite (Fe3O4) with a small amount of hematite (α-Fe2O3) as a secondary phase. Tea polyphenol suppresses the amount of the secondary phase present in the samples. X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transmission infrared spectrometry (FTIR), and vibration sample magnetometry (VSM) were used to investigate the properties of the samples. The Rietveld refinement technique was employed for the quantitative estimation of the secondary α-Fe2O3 phase along with the primary Fe3O4 phase from the XRD patterns. Absorption peaks at 1635/1615 cm−1 and 2950/2862 cm−1 due to the C=C bond and the C–H stretching vibration, respectively, bear the signature of polyphenol present in the samples. The average particle size of the particles was measured by TEM as 10 nm. Polyphenol coating enhances the value of the saturation magnetization (MS) of the iron oxide nanoparticles from 39 to 44 emu/g. The blocking temperature for coated and uncoated samples was estimated as 167 K and 195 K, respectively, which also confirms that samples are superparamagnetic at room temperature. Cytotoxicity of the nanoparticles was investigated using MTT assay on the L929 fibroblast cell line, and cell viability was found to increase for the coated sample. The specific absorption rate of polyphenol-coated nanoparticles in water was measured as 105 W/g for a sample concentration of 5 mg/ml in the AC magnetic field of 7.74 kA/m and frequency 337 kHz as compared to 66 W/g for the uncoated sample under the same conditions. The results demonstrate that the polyphenol coating enhances MS and biocompatibility of these nanoparticles which can be considered as a potential candidate for use as thermo seeds in hyperthermia application.


Magnetic hyperthermia Magnetite Nanoparticle synthesis Polyphenol-coated iron oxide nanoparticle Cytotoxicity 



The authors acknowledge the Department of Physics, IIT Guwahati, for XRD purchased under the DST FIST program.


  1. 1.
    Laurent, S., Dutz, S., Häfeli, U.O., Mahmoudi, M.: Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interf. Sci. 166, 8–23 (2011)CrossRefGoogle Scholar
  2. 2.
    Sangaiya, P., Jayaprakash, R.: A review on iron oxide nanoparticles and their biomedical applications. J. Supercond. Nov. Magn. 31, 3397–3413 (2018)CrossRefGoogle Scholar
  3. 3.
    Salunkhe, A.B., Khot, V.M., Pawar, S.H.: Magnetic hyperthermia with magnetic nanoparticles: a status review. Curr. Top. Med. Chem. 14(1–23), 572 (2014)CrossRefGoogle Scholar
  4. 4.
    Abenojar, E.C., Wickramasinghe, S., Bas-Concepcion, J., Samia, A.C.S.: Prog. Nat. Sci. Mater. Int. 26, 440–448 (2016)CrossRefGoogle Scholar
  5. 5.
    Vallejo-Fernandez, G., Whear, O., Roca, A.G., Hussain, S., Timmis, J., Patel, V., Grady, K.O.: Mechanisms of hyperthermia in magnetic nanoparticles. J. Phys. D. Appl. Phys. 46, 312001–312006 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Gilchrist, R.K., Medal, R., Shorey, W.D., Hanselman, R.C., Parrot, J.C., Taylor, C.B.: Selective inductive heating of lymph nodes. Ann. Surg. 146, 596–606 (1957)CrossRefGoogle Scholar
  7. 7.
    Storm, F.K., Harrison, W.H., Elliott, R.S., Morton, D.L.: Normal tissue and solid tumor effects of hyperthermia in animal models and clinical trials. Cancer Res. 39, 2245–2251 (1979)Google Scholar
  8. 8.
    Chan, D.C.F., Kirpotin, D.B., Bunn, P.A.: Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer. J. Magn. Magn. Mater. 122, 374–378 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    Suto, M., Hirota, Y., Mamiya, H., Fujita, A., Kasuya, R., Tohji, K., Jeyadevan, B.: Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J. Magn. Magn. Mater. 321, 1493–1496 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Linh, P.H., Phuc, N.X., Hong, L.V., Uyen, L.L., Chien, N.V., Nam, P.H., Quy, N.T., Nhung, H.T.M., Phong, P.T., In-Ja, L.: Dextran coated magnetite high susceptibility nanoparticles for hyperthermia applications. J. Magn. Magn. Mater. 460, 128–136 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    Coïssona, M., Barreraa, G., Appino, C., Celegato, F., Martino, L., Safronov, A.P., Kurlyandskaya, G.V., Tiberto, P.: Specific loss power measurements by calorimetric and thermal methods on γ-Fe2O3 nanoparticles for magnetic hyperthermia. J. Magn. Magn. Mater. 473, 403–409 (2019)ADSCrossRefGoogle Scholar
  12. 12.
    Shah, R.R., Davis, T.P., Glover, A.L., Nikles, D.E., Brazel, S.C.: Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia. J. Magn. Magn. Mater. 387, 96–106 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Raland, R.D., Saikia, D., Borgohain, C., Borah, J.P.: Heating efficiency and correlation between the structural and magnetic properties of oleic acid coated MnFe2O4 nanoparticles for magnetic hyperthermia application. J. Phys. D. Appl. Phys. 50, 325004–325016 (2017)CrossRefGoogle Scholar
  14. 14.
    Shahjuee, T., Masoudpanah, S.M., Mirkazemi, S.M.: Thermal decomposition synthesis of MgFe2O4 nanoparticles for magnetic hyperthermia. J. Supercond. Nov. Magn. 32, 1347 (2018). CrossRefGoogle Scholar
  15. 15.
    Surendra, M.K., Dutta, R., Rao, M.S.R.: Realization of highest specific absorption rate near superparamagnetic limit of CoFe2O4 colloids for magnetic hyperthermia applications. Mater. Res. Express. 1, 026107–026115 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Pimentel, B., Caraballo-Vivas, R.J., Checca, N.R., Zverev, V.I., Salakhova, R.T., Makarova, L.A., Pyatakov, A.P., Perov, N.S., Tishin, A.M., Shtil, A.A., Rossi, A.L., Reis, M.S.: Threshold heating temperature for magnetic hyperthermia: controlling the heat exchange with the blocking temperature of magnetic nanoparticles. J. Solid State Chem. 260, 34–38 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    Lotfi, S., Bahari, S., Bahari, A., Roudbari, M.: Magnetic performance and evaluation of radiofrequency hyperthermia of perovskite La1−xSrxMnO3. J. Supercond. Nov. Magn. 31, 2187–2193 (2018)CrossRefGoogle Scholar
  18. 18.
    Kim, D.H., Se-Ho Lee, S.H., Kim, K.N., Kim, K.M., Shim, I.B., Lee, Y.K.: Temperature change of various ferrite particles with alternating magnetic field for hyper thermic application. J. Magn. Magn. Mater. 293, 320–327 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Najafinezhad, A., Abdellahi, M., Samandari, S.S., Ghayour, H., Khandan, A.: Hydroxyapatite- M-type strontium hexaferrite: a new composite for hyperthermia applications. J. Alloys Compd. 734, 290–300 (2018)CrossRefGoogle Scholar
  20. 20.
    Abdellahi, M., Najafinezhad, A., Samandari, S.S., Khandan, A., Ghayour, H.: Zn and Zr co-doped M-type strontium hexaferrite: synthesis, characterization and hyperthermia application. Chin. J. Phys. 56, 331–339 (2018)CrossRefGoogle Scholar
  21. 21.
    Awwad, A.M., Salem, N.M.: A green and facile approach for synthesis of magnetite nanoparticles. Nanosci. Nanotechnol. 2, 208 (2012)CrossRefGoogle Scholar
  22. 22.
    Vazquez-Olmos, A.R., Abatal, M., Sato-Berru, R. Y., Pedraza-Basulto, G. K., Garcia-Vazquez, V., Sainz-Vidal, A., Perez-Bañuelos, R., Quiroz, A.: Mechanosynthesis of MFe2O4(M=Co, Ni and Zn) magnetic nanoparticles for Pb removal from aqueous solution, J Nanomater. 9182024, 9 pages (2016)Google Scholar
  23. 23.
    Durmus, Z., Sözeri, H., Unal, B., Baykal, A., Topkaya, R., Kazan, S., Toprak, M.S.: Magnetic and dielectric characterization of alginic acid-Fe3O4 nanocomposite. Polyhedron. 30, 322–328 (2011)CrossRefGoogle Scholar
  24. 24.
    Durmus, Z., Erdemi, H., Aslan, A., Toprak, M.S., Sözeri, H., Baykal, A.: Synthesis and characterization of poly(vinyl phosphonic acid)(PVPA)-Fe3O4 nanocomposite. Polyhedron. 30, 419–426 (2011)CrossRefGoogle Scholar
  25. 25.
    Aydin, M., Durmus, Z., Kavas, H., Esat, B., Sözeri, H., Baykal, A., Yilmaz, F., Toprak, M.S.: Synthesis and characterization of poly(3-thiophene acetic acid)/Fe3O4 nanocomposite. Polyhedron. 30, 1120–1126 (2011)CrossRefGoogle Scholar
  26. 26.
    Nikitin, A., Khramtsov, M., Garanina, A., Mogilnikov, P., Sviridenkova, N., Shchetinin, I., Savchenko, A., Abakumov, M., Majouga, A.: Synthesis of iron oxide nanorods for enhanced magnetic hyperthermia. J. Magn. Magn. Mater. 469, 443 (2019)ADSCrossRefGoogle Scholar
  27. 27.
    Hergt, R., Dutz, S.: Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mater. 311, 187–192 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Mahmoudi, M., Sant, S., Wang, B., Laurent, S., Sen, T.: Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 63, 24–46 (2011)CrossRefGoogle Scholar
  29. 29.
    Durmus, Z., Kavas, H., Baykal, A., Sözeri, H., Alpsoy, L., Celik, S.Ü., Topkaya, R., Toprak, K.S.: Synthesis and characterization of L-carnosine coated iron oxide nanoparticles. J. Alloys Compd. 509, 2555–2561 (2011)CrossRefGoogle Scholar
  30. 30.
    Kemikli, N., Kavas, H., Kazan, S., Baykal, A., Ozturk, R.: Synthesis of protoporphyrin coated superparamagnetic iron oxide nanoparticles via dopamine anchor. J. Alloys Compd. 502, 439–444 (2010)CrossRefGoogle Scholar
  31. 31.
    Massart, R.: Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 17, 1247–1248 (1981)ADSCrossRefGoogle Scholar
  32. 32.
    Carvajal, J.R.: Recent developments of the program FULLPROF Commission on Powder Diffraction (IUCr) Newsletter 26, 12–19 (2001)Google Scholar
  33. 33.
    Xiao, L., Mertens, M., Wortmann, L., Kremer, S., Valldor, M., Lammers, T., Kiessling, F., Mathur, S.: Enhanced in vitro and in vivo cellular imaging with green tea coated water-soluble iron oxide nanocrystals. ACS Appl. Mater. Interfaces. 7, 6530–6540 (2015)CrossRefGoogle Scholar
  34. 34.
    Sreeja, V., Jayaprabha, K.N., Joy, P.A.: Water-dispersible ascorbic-acid-coated magnetite nanoparticles for contrast enhancement in MRI. Appl. Nanosci. 5, 435–441 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Ghasempour, S., Shokrgozar, M.A., Ghasempour, R., Alipour, M.: Investigating the cytotoxicity of iron oxide nanoparticles in in vivo and in vitro studies. Expt. Toxic. Pathol. 67, 509–515 (2015)CrossRefGoogle Scholar
  36. 36.
    Darroudi, M., Hakimi, M.C., Goodarzi, E., Oskuee, R.K.: Superparamagnetic iron oxide nanoparticles (SPIONs): green preparation, characterization and their cytotoxicity effects. Ceram. Int. 40, 14641–14645 (2014)CrossRefGoogle Scholar
  37. 37.
    Mahmoudi, M., Simchi, A., Vali, H., Imani, M., Shokrgozar, M.A., Azadmanesh, K., Azari, F.: Cytotoxicity and cell cycle effects of bare and poly(vinylalcohol)-coated iron oxide nanoparticles in mouse fibroblasts. Adv. Bio. Mater. 11, B243–B250 (2009)Google Scholar
  38. 38.
    Gupta, A.K., Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 26, 3995–4021 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsJagiroad CollegeJagiroad, MorigaonIndia
  2. 2.Department of PhysicsNational Institute of Technology NagalandChumukedimaIndia
  3. 3.Department of PhysicsIndian Institute of Technology GuwahatiGuwahati, KamrupIndia

Personalised recommendations