Advertisement

Effect of Hydrostatic Pressure on Superconductivity of FeSe Thin Films

  • R. SchneiderEmail author
  • A. G. Zaitsev
  • A. Beck
  • D. Fuchs
  • R. Hott
Original Research
  • 30 Downloads

Abstract

The electronic transport in superconducting epitaxial c-axis-oriented FeSe thin films grown on (001)-oriented MgO substrates was investigated. To this end, the in-plane resistivity was measured in dependence on temperature, pressure, and magnetic field. The temperature ranged from 1.2 to 35 K; static magnetic fields with strengths up to 14 T were applied normal to the film surface, i.e. parallel to the FeSe c-axis; and hydrostatic pressure was applied from 0 to 2.7 GPa. Concerning the role of the MgO substrate in the pressure experiments, it is suggested that the substrate mainly reduces the in-plane compressibility of the film in comparison to bulk. The transition to superconductivity shifted to higher temperatures with increasing pressure. The onset critical temperature raised from 11.5 K at zero applied pressure with an initial rate of 2.5 K/GPa to 18.2 K at 2.7 GPa. The pressure-induced increase of the critical temperature was accompanied by a twofold broadening of the transition width. As a counterpart of pressure, the magnetic field shifted the superconducting transition to lower temperature. In addition to pressure, the field also induced a noticeable broadening of the superconductive transition rather than a parallel shift. The positive magnetoresistance at 20 K increased with enhanced pressure and reached 24% at the highest pressure and field. For each applied pressure, the magnetoresistance could be fitted by a Lorentzian function, i.e. it originates from classical Lorentz scattering. The resulting charge carrier mobility increased under pressure suggesting a decreasing collision rate. The upper critical field raised with higher pressure. Its temperature dependence could be fitted by conventional Werthamer-Hohenberg-Helfand theory under the assumption of the Pauli paramagnetic effect that became more pronounced under pressure. The anomalous behaviour of the normalized negative slope of the upper critical field at the critical temperature suggested a change of the Fermi surface above a critical pressure of 2 GPa.

Keywords

Chalcogenides Hydrostatic pressure Superconductivity Transport properties 

Notes

References

  1. 1.
    Chu, C.W., Lorenz, B.: Physica C. 469, 385 (2009)CrossRefGoogle Scholar
  2. 2.
    Sefat, A.S.: Rep. Prog. Phys. 74, 124502 (2011)CrossRefGoogle Scholar
  3. 3.
    Okabe, H., Takeshita, N., Horigane, K., Muranaka, T., Akimitsu, J.: Phys. Rev. B. 81, 205119 (2010)CrossRefGoogle Scholar
  4. 4.
    Margadonna, S., Takabayashi, Y., Ohishi, Y., Mizuguchi, Y., Takano, Y., Kagayama, T., Nakagawa, T., Takata, M., Prassides, K.: Phys. Rev. B. 80, 064506 (2009)CrossRefGoogle Scholar
  5. 5.
    Naghavi, S.S., Chadov, S., Felser, C.: J. Phys. Condens. Matter. 23, 205601 (2011)CrossRefGoogle Scholar
  6. 6.
    Kumar, R.S., Zhang, Y., Sinogeikin, S., Xiao, Y., Kumar, S., Chow, P., Cornelius, A.L., Chen, C.: J. Phys. Chem. B. 114, 12597 (2010)CrossRefGoogle Scholar
  7. 7.
    Medvedev, S., McQueen, T.M., Troyan, I.A., Palosyuk, T., Eremets, M.I., Cava, R.J., Naghavi, S., Casper, F., Ksenofontov, V., Wortmann, G., Felser, C.: Nat Mater. 8, 630 (2009)CrossRefGoogle Scholar
  8. 8.
    Garbarino, G., Sow, A., Lejay, P., Sulpice, A., Toulemonde, P., Mezouar, M., Núñez-Regueiro, M.: Europhys. Lett. 86, 27001 (2009)CrossRefGoogle Scholar
  9. 9.
    Braithwaite, D., Salce, B., Lapertot, G., Bourdarot, F., Marin, C., Aoki, D., Hanfland, M.: J. Phys. Condens. Matter. 21, 232202 (2009)CrossRefGoogle Scholar
  10. 10.
    Sun, J.P., Matsuura, K., Ye, G.Z., Mizukami, Y., Shimozawa, M., Matsubayashi, K., Yamashita, M., Watashige, T., Kasahara, S., Matsuda, Y., Yan, J.-Q., Sales, B.C., Uwatoko, Y., Cheng, J.-G., Shibauchi, T.: Nat. Commun. 7, 12146 (2016)CrossRefGoogle Scholar
  11. 11.
    Kang, J.-H., Jung, S.-G., Lee, S., Park, E., Lin, J.-Y., Chareev, D.A., Vasiliev, A.N., Park, T.: Supercond. Sci. Technol. 29, 035007 (2016)CrossRefGoogle Scholar
  12. 12.
    Terashima, T., Kikugawa, N., Kiswandhi, A., Graf, D., Choi, E.-S., Brooks, J.S., Kasahara, S., Watashige, T., Matsuda, Y., Shibauchi, T., Wolf, T., Böhmer, A.E., Hardy, F., Meingast, C.: v. Löhneysen, H., Uji, S. Phys. Rev. B. 094505, 93 (2016)Google Scholar
  13. 13.
    Terashima, T., Kikugawa, N., Kasahara, S., Katashige, T., Matsuda, Y., Shibauchi, T., Uji, S.: Phys. Rev. B. 93, 180503(R) (2016)CrossRefGoogle Scholar
  14. 14.
    Kaluarachchi, U.S., Taufour, V., Böhmer, A.E., Tanatar, M.A., Bud’ko, S.L., Kogan, V.G., Prozorov, R., Canfield, P.C.: Phys. Rev. B. 93, 064503 (2016)CrossRefGoogle Scholar
  15. 15.
    Gooch, M., Lorenz, B., Huang, S.X., Chien, C.L., Chu, C.W.: J. Appl. Phys. 111, 112610 (2012)CrossRefGoogle Scholar
  16. 16.
    Mizuguchi, Y., Tomioka, F., Tsuda, S., Yamaguchi, T., Takano, Y.: Appl. Phys. Lett. 93, 152505 (2008)CrossRefGoogle Scholar
  17. 17.
    Mizuguchi, Y., Hara, Y., Deguchi, K., Tsuda, S., Yamaguchi, T., Takeda, K., Kategawa, H., Tou, H., Takano, Y.: Supercond. Sci. Technol. 23, 054013 (2010)CrossRefGoogle Scholar
  18. 18.
    Huang, S.X., Chien, C.L., Thampy, V., Broholm, C.: Phys. Rev. Lett. 104, 217002 (2010)CrossRefGoogle Scholar
  19. 19.
    Bellingeri, E., Pallecchi, I., Buzio, R., Gerbi, A., Marrè, D., Cimberle, M.R., Tropeano, M., Putti, M., Palenzona, A., Ferdeghini, C.: Appl. Phys. Lett. 96, 102512 (2010)CrossRefGoogle Scholar
  20. 20.
    Schneider, R., Zaitsev, A.G., Fuchs, D., Fromknecht, R.: Supercond. Sci. Technol. 26, 055014 (2013)CrossRefGoogle Scholar
  21. 21.
    Schneider, R., Zaitsev, A.G., Fuchs, D., Hott, R.: Supercond. Sci. Technol. 32, 025001 (2019)CrossRefGoogle Scholar
  22. 22.
    Schneider, R., Zaitsev, A.G., Fuchs, D., von Löhneysen, H.: J. Phys. Condens. Matter. 26, 455701 (2014)CrossRefGoogle Scholar
  23. 23.
    Zaitsev, A.G., Schneider, R., Fuchs, D., Beck, A., Hott, R.: J. Phys. Conf. Ser. 507, 012054 (2014)CrossRefGoogle Scholar
  24. 24.
    Murata, K., Yokogawa, K., Yoshino, H., Klotz, S., Munsch, P., Irizawa, A., Nishiyama, M., Iizuka, K., Nanba, T., Okada, T., Shiraga, Y., Aoyama, S.: Rev. Sci. Instrum. 79, 085101 (2008)CrossRefGoogle Scholar
  25. 25.
    Eiling, A., Schilling, J.S.: J. Phys. F: Metal Phys. 11, 623 (1981)CrossRefGoogle Scholar
  26. 26.
    Yokogawa, K., Murata, K., Yoshino, H., Aoyama, S.: Jpn. J. Appl. Phys. 46, 3636 (2007)CrossRefGoogle Scholar
  27. 27.
    Van der Pauw, L.W.: Philips Tech Rev. 20, 220 (1958)Google Scholar
  28. 28.
    Knöner, S., Zielke, D., Köhler, S., Wolf, B., Wolf, T., Wang, L., Böhmer, A., Meingast, C., Lang, M.: Phys. Rev. B. 91, 174510 (2015)CrossRefGoogle Scholar
  29. 29.
    Imai, T., Ahilan, K., Ning, F.L., McQueen, T.M., Cava, R.J.: Phys. Rev. Lett. 102, 177005 (2009)CrossRefGoogle Scholar
  30. 30.
    Ghorbani, S.R., Wang, X.L., Shabazi, M., Dou, S.K., Choi, K.Y., Lin, C.T.: Appl. Phys. Lett. 100, 072603 (2012)CrossRefGoogle Scholar
  31. 31.
    Huynh, K.K., Tanabe, Y., Urata, T., Oguro, H., Heguri, S., Watanabe, K., Tanigaki, K.: Phys. Rev. B. 90, 144516 (2014)CrossRefGoogle Scholar
  32. 32.
    Watson, M.D., Yamashita, T., Kasahara, S., Knafo, W., Nardone, M., Béard, J., Hardy, F., McCollam, A., Narayanan, A., Blake, S.F., Wolf, T., Haghighirad, A.A., Meingast, C., Schofield, A.J., von Löhneysen, H., Matsuda, Y., Coldea, A.I., Shibauchi, T.: Phys. Rev. Lett. 115, 027006 (2015)CrossRefGoogle Scholar
  33. 33.
    Pippard, A.B.: Magnetoresistance in metals. Cambridge University press (1989)Google Scholar
  34. 34.
    Suski, T., Wiśniewski, P., Litwin-Staszewska, E., Kassut, J., Wilamowski, Z., Dietl, T., Światek, K., Ploog, K., Knecht, J.: Semicond. Sci. Technol. 5, 261 (1990)CrossRefGoogle Scholar
  35. 35.
    Rang, Z., Nathan, M.I., Ruden, P.P., Podzorov, V., Gershenson, M.E., Newman, C.R., Frisbie, C.D.: Appl. Phys. Lett. 86, 123501 (2005)CrossRefGoogle Scholar
  36. 36.
    Nguyen, T.P., Shim, J.H.: Phys. Chem. Chem. Phys. 18, 13888 (2016)CrossRefGoogle Scholar
  37. 37.
    Nayak, A.P., Yuan, Z., Cao, B., Liu, J., Wu, J., Moran, S.T., Li, T., Akinwande, D., Jin, C., Lin, J.-F.: ACS Nano. 9, 9117 (2015)CrossRefGoogle Scholar
  38. 38.
    Werthamer, N.R., Helfand, E., Hohenberg, P.C.: Phys. Rev. 147, 295 (1966)CrossRefGoogle Scholar
  39. 39.
    Audouard, A., Duc, F., Drigo, L., Toulemonde, P., Karlsson, S., Strobel, P., Sulpice, A.: Europhys. Lett. 109, 27003 (2015)CrossRefGoogle Scholar
  40. 40.
    Her, J.L., Kohama, Y., Matsuda, Y.H., Kindo, K., Yang, W.-H., Chareev, D.A., Mitrofanova, E.S., Volkova, O.S., Vasiliev, A.N., Lin, J.-Y.: Supercond. Sci. Technol. 28, 045013 (2015)CrossRefGoogle Scholar
  41. 41.
    Gati, E., Xiang, L., Wang, L.-L., Manni, S., Canfield, P.C., Bud’ko, S.L.: J. Phys. Condens. Matter. 31, 035701 (2019)CrossRefGoogle Scholar
  42. 42.
    Kogan, V.G., Prozorov, R.: Rep. Prog. Phys. 75, 114502 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für FestkörperphysikKarlsruher Institut für TechnologieKarlsruheGermany

Personalised recommendations