Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 12, pp 3907–3913 | Cite as

Formation and Detection of Magnetic CoNiFe Nanowire Network Using Magnetoelastic Sensor

  • S. AtalayEmail author
  • H. Kaya
  • F. E. Atalay
  • T. Izgi
  • V. S. Kolat
Original Research
  • 45 Downloads

Abstract

In this study, CoNiFe magnetic nanowires were detected using a magnetoelastic sensor (ME) without any coating. Amorphous ferromagnetic ribbon of Metglass 2826 (Fe40Ni38Mo4B18) was used as a magnetoelastic sensor. The magnetoelastic ribbons were drop coated with Co12Ni64Fe24 magnetic nanowires in order to study how the mass deposition affects the resonance frequency and to determine the amount of coated nanowire. It was found that the minimum amount of detected nanowire can be as low as 200 ng. It was also shown that the nanowire network was developed on the surface of Metglass 2826 MB magnetoelastic sensor.

Keywords

Magnetoelastic sensor Amorphous ribbon Nanowire 

Notes

Funding Information

This work was supported by the Inonu University with project number FDK-2018-1410.

References

  1. 1.
    Singamaneni, S., Bliznyuk, V.N., Binek, C., Evengy, Y.T.: Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. J. Mater. Chem. 21, 16819–16845 (2011)CrossRefGoogle Scholar
  2. 2.
    Haun, J.B., Yoon, T.J., Hakho, L., Weissleder, R.: Magnetic nanoparticle biosensors. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2, 291–304 (2010)CrossRefGoogle Scholar
  3. 3.
    Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F., Yan, Y.Q.: One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003)CrossRefGoogle Scholar
  4. 4.
    Whitney, T.M., Searson, P.C., Jiang, J.S., Chien, C.L.: Fabrication and magnetic properties of arrays of metallic nanowires. Science. 261, 1316–1319 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J., Lead, J.R.: Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 27, 1825–1857 (2008)CrossRefGoogle Scholar
  6. 6.
    Esposito, E., Granata, C., Vettoliere, A., Russo, R., Peddis, D., Russo, M.: Nano superconducting quantum interference device sensors for magnetic nanoparticle detection. J. Nanosci. Nanotechnol. 12, 7468–7472 (2012)CrossRefGoogle Scholar
  7. 7.
    Garcia-Arribas, A., Martinez, F., Fernandez, E., Ozaeta, I., Kurlyandskaya, G.V., Svalov, A.V., Berganzo, J., Barandiaran, J.M.: GMI detection of magnetic-particle concentration in continuous flow. Sensors Actuators A Phys. 172, 103–108 (2011)CrossRefGoogle Scholar
  8. 8.
    Hikaru, K., Sasada, I.: Superparamagnetic nanoparticle detection system by using a fundamental mode orthogonal fluxgate (FM-OFG) gradiometer. AIP Adv. 7, 056716–056716 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    Huong Giang, D.T., Dang, D.X., Toan, N.X., Tuan, N.V., Phung, A.T., Duc, N.H.: Distance magnetic nanoparticle detection using a magnetoelectric sensor for clinical interventions. Rev. Sci. Instrum. 88, 015004–015006 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Baselt, D.R., Lee, G.U., Natesan, M., Metzger, S.W., Sheehan, P.E., Colton, P.A.: Biosensor based on magnetoresistance technology. Biosens. Bioelectron. 13, 731–739 (1998)CrossRefGoogle Scholar
  11. 11.
    Kurlyandskaya, G.V., Levit, V.: Advanced materials for drug delivery and biosensors based on magnetic label detection. Mater. Sci. Eng. C. 27, 495–503 (2007)CrossRefGoogle Scholar
  12. 12.
    Devekota, J., Wang, C., Ruiz, A., Mohapatra, S., Mukherjee, P., Srikanth, H., Phan, M.H.: Detection of low-concentration superparamagnetic nanoparticles using an integrated radio frequency magnetic biosensor. J. Appl. Phys. 113, 104701 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Grimes, C.A., Sommath, C.R., Rani, S., Qingyun, C.: Theory, instrumentation and applications of magnetoelastic resonance sensors: a review. Sensors. 11, 2809–2844 (2011)CrossRefGoogle Scholar
  14. 14.
    Grimes, C.A., Mungle, C.S., Zeng, K., Jain, M.K., Dreschel, W.R., Paulose, M., Ong, K.G.: Wireless magnetoelastic resonance sensors: a critical review. Sensors. 2, 294–313 (2002)CrossRefGoogle Scholar
  15. 15.
    Staruch, M., Kassner, C., Fackler, S., Takeuchi, I., Bussmann, K., Lofland, S.E., Dolabdjian, C., Lacomb, R., Finkel, P.: Effects of magnetic field and pressure in magnetoelastic stress reconfigurable thin film resonators. Appl. Phys. Lett. 107, 032909–032904 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Atalay, S., Squire, P.T.: Magnetoelastic properties of cold drawn FeSiB amorphous wires. IEEE Trans. Magn. 28, 3144–3146 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    Kouzoudis, D., Grimes, C.A.: Remote query fluid-flow velocity measurement using magnetoelastic thick-film sensor. J. Appl. Phys. 87, 6301–6303 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    Atalay, S., Kolat, V.S., Bayri, N., Izgi, T.: Magnetoelastic sensor studies on amorphous magnetic FeSiB wire and the application in viscosity measurement. J. Supercond. Nov. Magn. 29, 1551–1556 (2016)CrossRefGoogle Scholar
  19. 19.
    Bravo-Imaz, I., García-Arribas, A., Gorrotxategi, E., Arnaiz, A., Barandiarán, J.M.: Magnetoelastic viscosity sensor for on-line status assessment of lubricant oils. IEEE Trans. Magn. 4, 113–116 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Beltrami, L.V.R., Kunst, S.R., Birriel, E.J., Malfatti, C.F.: Magnetoelastic biosensors: corrosion protection of an FeNiMoB alloy from alkoxide precursors. Thin Solid Films. 624, 83–94 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Chen, P., Jiang, Q.S., Horikawa, S., Li, S.Q.: Magnetoelastic-sensor integrated microfluidic chip for the measurement of blood plasma viscosity. J. Electrochem. Soc. 164, B247–B252 (2017)CrossRefGoogle Scholar
  22. 22.
    Lopes, A.C., Sagasti, A., Lasheras, A., Muto, V., Gutierrez, J., Kouzoudis, D., Barandiaran, J.M.: Accurate determination of the Q quality factor in magnetoelastic resonant platforms for advanced biological detection. Sensors. 18, 887 (2018)CrossRefGoogle Scholar
  23. 23.
    Baimpos, T., Gora, L., Nikolakis, V., Kouzoudis, D.: Selective detection of hazardous VOCs using zeolite/Metglas composite sensors. Sensors Actuators A Phys. 186, 21–31 (2012)CrossRefGoogle Scholar
  24. 24.
    Wan, J., Johnson, M.L., Guntupalli, R., Petrenko, V.A., Chin, B.A.: Detection of bacillus anthracis spores in liquid using phage-based magnetoelastic micro-resonators. Sensors Actuators B. 127, 559–566 (2007)CrossRefGoogle Scholar
  25. 25.
    Atalay, S., Kolat, V.S., Atalay, F.E., Bayri, N., Kaya, H., Izgi, T.: Magnetoelastic sensor for magnetic nanoparticle detection. J. Magn. Magn. Mater. 465, 151–155 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    Atalay, F.E., Kaya, H., Yagmur, V., Tari, S., Atalay, S., Avsar, D.: The effect of back electrode on the formation of electrodeposited CoNiFe magnetic nanotubes and nanowires. Appl. Surf. Sci. 256, 2414–2418 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Livingston, J.D.: Magnetomachanical properties of amorphous metals. Physics State Solids A. 70, 591–596 (1982)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. Atalay
    • 1
    Email author
  • H. Kaya
    • 1
  • F. E. Atalay
    • 1
  • T. Izgi
    • 1
  • V. S. Kolat
    • 1
  1. 1.Science Faculty, Department of PhysicsInonu UniversityMalatyaTurkey

Personalised recommendations