Structural, Electronic, and Magnetic Properties of Hard Magnetic SmNi2Fe Compound: a DFT Study

  • S. AkbudakEmail author
  • A. Candan
  • M. Özduran
Original Research


Permanent magnets with high magnetic properties are used in many areas like motors, generators, magnetic separators, handles, electron tubes, magnetic resonance imaging systems, health, electronics, automotive, and mining. Due to their easy and inexpensive production methods, most common permanent magnets are ferrite magnets. However, the quest for finding new and alternative permanent magnets is still in progress. Thus, in this study, lattice parameters (a, c), equilibrium lattice volume (V), density (ρ), formation energy (Ef), Wyckoff positions, magnetic moments, density of states. and electronic band structure of SmNi2Fe are investigated using density functional theory (DFT) calculations. For exchange-correlation relations, PBE method within generalized gradient approximation (GGA) and (GGA + U) is used. With a 8.628 μB (GGA) and 9.886 μB (GGA + U) total magnetic moment, SmNi2Fe shows a strong permanent magnetism. Obtained negative formation enthalpy of SmNi2Fe (− 1.526 eV/f.u.) clearly shows that studied material can be synthesized experimentally. Besides, density of states and spin polarized electronic band structures indicate that SmNi2Fe is metallic. Calculated lattice parameters of SmNi2Fe are in good agreement with literature.


Permanent magnets Density functional theory (DFT) Magnetic moment Formation enthalpy Electronic properties 



  1. 1.
    Shafiq, M., Ahmad, I., Asadabadi, S.J.: Theoretical studies of strongly correlated rare earth intermetallics RIn3 and RSn3 (R = Sm, Eu, and Gd). J. Appl. Phys. 116, 103905 (2014)CrossRefGoogle Scholar
  2. 2.
    Skomski, R. and Coey, J. M. D.: Permanent Magnetism, IOP, 1999 A Monograph Focussed on the Physics of Permanent Magnetism, with chapters on experimental methods, materials and applicationsGoogle Scholar
  3. 3.
    Campbell, P.: Permanent Magnet Materials and their Applications, CUP, 1994 207 ppA Short and Readable Book for EngineersGoogle Scholar
  4. 4.
    Abele, P.: Stuctures of Permanent Magnets, Wiley, 1998A Monograph on Magnet Structures which Generate Static Magnetic FieldsGoogle Scholar
  5. 5.
    Gutfleisch, O., Willard, M.A., Brück, E., Chen, C.H., Sankar, S.G., Liu, J.P.: Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv. Mater. 23, 821–842 (2011)CrossRefGoogle Scholar
  6. 6.
    Pina, E., Palomares, F.J., Garcia, M.A., Cebollada, F., Hoyos, A.D., Romeroa, J.J., Hernandoa, A., Gonza ́lez, J.M.: Coercivity in SmCo hard magnetic films for MEMS applications. J. Magn. Magn. Mater. 290, 1234–291, 1236 (2005)Google Scholar
  7. 7.
    Zhu, J.G., Park, C.: Magnetic tunnel junctions. Mater. Today. 9, 36–45 (2006)CrossRefGoogle Scholar
  8. 8.
    Jiles, D.C.: Recent advances and future directions in magnetic materials. Acta Mater. 51, 5907–5939 (2003)CrossRefGoogle Scholar
  9. 9.
    Zhang, J., Zhou, G., Chen, G., Latroche, M., Percheron-Gue’gan, A., Sun, D.: Relevance of hydrogen storage properties of ANi3 intermetallics (A = La, Ce, Y) to the ANi2 subunits in their crystal structures. Acta Mater. 56, 5388–5394 (2008)CrossRefGoogle Scholar
  10. 10.
    Herbst, J.F., Croat, J.J.: Magnetization of RFe3 intermetallic compounds: molecular field theory analysis. J. Appl. Phys. 53, 4304 (1982)CrossRefGoogle Scholar
  11. 11.
    Wasylechko, L.O., Grin, Y.N., Fedorchuk, A.A.: CeNi3-type ternary phases in the R-Ni-Ga systems (R = Y, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). J. Alloy. Compd. 219, 222–224 (1995)CrossRefGoogle Scholar
  12. 12.
    Coey, J.M.D., Sun, H.: Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in anmonia. J. Magn. Magn. Mater. 87, L251–L254 (1990)CrossRefGoogle Scholar
  13. 13.
    Burkert, T., Nordstrom, L., Eriksson, O., Heinonen, O.: Phys. Rev. Lett. 93, 027203 (2004)CrossRefGoogle Scholar
  14. 14.
    Wu, D.X., Zhang, Q.M., Liu, J.P., Yuan, D.W., Wu, R.Q.: Appl. Phys. Lett. 92, 052503 (2008)CrossRefGoogle Scholar
  15. 15.
    Verma, A., Verma, P., Sidhu, R.K.: Matrix effect in soft metal-bonded samarium-cobalt (SmCos) permanent magnets. Bull. Mater. Sci. 19, 539–548 (1996)CrossRefGoogle Scholar
  16. 16.
    Das, D.K.: Twenty million energy product samarium-cobalt magnet. IEEE Trans. Magn, MAG. 5, 3 (1969)CrossRefGoogle Scholar
  17. 17.
    Blackmore, E.W.: Radiation effects of protons on samarium-cobalt permanent magnets. IEEE Trans. Nucl. Sci. NS. 32, 3669–3671 (1985)CrossRefGoogle Scholar
  18. 18.
    Duerrschnabel, M., Yi, M., Uestuener, K., Liesegang, M., Katter, M., Kleebe, H.-J., Xu, B., Gutfleisch, O., Molina-Luna, L.: Atomic structure and domain wall pinning in samarium-cobalt-based permanent magnets. Nat. Commun. 8(54), 54 (2017)CrossRefGoogle Scholar
  19. 19.
    Söderlind, P., Landa, A., Locht, I.L.M., Åberg, D., Kvashnin, Y., Pereiro, M., Däne, M., Turchi, P.E.A., Antropov, V.P., Eriksson, O.: Prediction of the new efficient permanent magnet SmCoNiFe3. Phys. Rev. B. 96, 100404(R) (2017)CrossRefGoogle Scholar
  20. 20.
    Nouri, K., Jemmali, M., Walha, S., Zehani, K., Bessais, L., Salah, A.B.: The isothermal section phase diagram of the Sm-Fe-Ni ternary system at 800°C. J. Alloy. Compd. 661, 508–515 (2016)CrossRefGoogle Scholar
  21. 21.
    Matsuura, M., Yarimizu, K., Osawa, Y., Tezuka, N., Sugimoto, S., Ishikawa, T., Yoneyama, Y.: J. Magn. Magn. Mater. 471, 310–314 (2019)CrossRefGoogle Scholar
  22. 22.
    Nouri, K., Bouzidi, W., Jemmali, M., Hentech, I., Dhahri, E., Bessais, L.: Effect of ball-milling on magnetic properties of uniaxial nanocrystalline SmNi2Fe compound. J. Electron. Mater. 47, 1658–1664 (2018)CrossRefGoogle Scholar
  23. 23.
    Riley, M.A., Walmsley, A.D., Harris, I.R.: Magnets in prosthetic dentistry. J. Prosthet. Dent. 86, 137–142 (2001)CrossRefGoogle Scholar
  24. 24.
    Riley, M.A., Walmsley, A.D., Speight, J.D., Harris, I.R.: Magnets in medicine. Mater. Sci. Tech. 18, 1 (2002)CrossRefGoogle Scholar
  25. 25.
    Kresse, G., Hafner, J.: Phys. Rev. B. 48, 13115 (1993)CrossRefGoogle Scholar
  26. 26.
    Kresse, G., Furthmuller, J.: Phys. Rev. B. 54, 11169 (1996)CrossRefGoogle Scholar
  27. 27.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  28. 28.
    Huang, G.Y., Wang, C.Y., Wang, J.T.: Comp. Phys. Comm. 183, 1749–1752 (2012)CrossRefGoogle Scholar
  29. 29.
    Monkhorst, H.J., Pack, J.D.: Phys. Rev. B. 13, 5188 (1976)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Blöchl, P.E., Jepsen, O., Andersen, O.K.: Phys. Rev. B. 49, 16223 (1994)CrossRefGoogle Scholar
  31. 31.
    Candan, A., Akbudak, S., Uğur, Ş., Uğur, G.: J. Alloys Compd. 771, 664–673 (2019)CrossRefGoogle Scholar
  32. 32.
    Coey, J.M.D.: Hard magnetic materials: a perspective. IEEE Trans. Magn. 47, 4671–4681 (2011)CrossRefGoogle Scholar
  33. 33.
    Fei, C., Zhang, Y., Yang, Z., Liu, Y., Xiong, R., Shi, J., Ruan, X.: Synthesis and magnetic properties of hardmagnetic (CoFe2O4)–soft magnetic (Fe3O4) nano-composite ceramics by SPS technology. J. Magn. Magn. Mater. 323, 1811–1816 (2011)CrossRefGoogle Scholar
  34. 34.
    Zhang, D.T., Cao, S., Yue, M., Liu, W.Q., Zhang, J.X., Qiang, Y.: Structural and magnetic properties of bulk MnBi permanent magnets. J. Appl. Phys. 109, 07A722 (2011)CrossRefGoogle Scholar
  35. 35.
    Buschov, K.H.J.: New developments in hard magnetic materials. Rep. Prog. Phys. 54, 1123–1213 (1991)CrossRefGoogle Scholar
  36. 36.
    Kirchmayr, H.R.: Permanent magnets and hard magnetic materials. J. Phys. D. Appl. Phys. 29, 2763–2778 (1996)CrossRefGoogle Scholar
  37. 37.
    Li, D., Pan, D.S., Li, S.J., Zhang, Z.D.: Recent developments of rare-earth-free hard magnetic materials. Science China Physics, Mechanics & Astronomy. 59, 617501 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Arts and SciencesAdıyaman UniversityAdıyamanTurkey
  2. 2.Department of Machinery and Metal TechnologyAhi Evran UniversityKırşehirTurkey
  3. 3.Department of Physics, Faculty of Arts and SciencesAhi Evran UniversityKırşehirTurkey

Personalised recommendations