Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 12, pp 3811–3821 | Cite as

Effect of Strain on the Elastic, Electronic, and Magnetic Properties of Fluoro-Pervskite RbMnF3 and RbFeF3

  • H. M. HuangEmail author
  • C. X. Yu
  • Z. Y. Jiang
  • S. J. Luo
  • Y. J. Hu
Original Research


The elastic constants, electronic structure, and magnetic properties of rubidium-based fluoro-pervskite ferromagnetic semiconductor RbMnF3 and ferromagnetic half-metal RbFeF3 under strain were studied by first-principle methods. The calculation of elastic constants and mechanical parameters shows that both RbMnF3 and RbFeF3 have very stable mechanical properties in the strain range studied. In the strain range of − 6.0 to 10.0%, the ferromagnetic semiconductor characteristics of RbMnF3 can be maintained, and the semiconductor band gap can be increased from 1.49 eV at equilibrium to a maximum value of 1.80 eV under strain. The half-metallicity of RbFeF3 can also be preserved in the strain range of − 8.0 to 10.0%, and the half-metallic gap can reach up to 1.19 eV in this strain range. When RbMnF3 and RbFeF3 are ferromagnetic semiconductor and ferromagnetic half-metal, respectively, their molecular magnetic moments are integer values, and transition metal atoms are the most important contributors to total magnetic moment. Strong correlation correction does not change the physical properties of RbMnF3 and RbFeF3 in equilibrium state.


Perovskite Strain Elastic constant Half-metal 


Funding Information

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11674133 and 51872227), the Doctoral Scientific Research Foundation of Hubei University of Automotive Technology (Grant Nos. BK201804 and BK201807), the Natural Science Foundation of Hubei Province (Grant No. 2017CFB740), the Scientific Research Items Foundation of Hubei Educational Committee (Grant No. Q20111801), and Innovation Training Program for College Students of Hubei University of Automotive Technology (Grant No. DC2018100).


  1. 1.
    Dietl, T.: Nat. Mater. 9, 965–974 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Science. 287, 1019–1022 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Fukumura, T., Toyosaki, H., Yamada, Y.: Semicond. Sci. Technol. 20, S103 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Coey, J.M.D., Sanvito, S.: J. Phys. D. Appl. Phys. 37, 988–993 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    De Groot, R.A., Mueller, F.M., Van Engen, P.G., Buschow, K.H.J.: Phys. Rev. Lett. 50, 2024 (1983)ADSCrossRefGoogle Scholar
  6. 6.
    Carvajal, E., Navarro, O., Allub, R., Avignon, M., Alascio, B.: Eur. Phys. J. B. 48, 179–187 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Wang, W., Feng, W., Yuan, J., Pang, N., Zhao, X., Li, M., Bao, Z., Zhu, K., Odkhuu, D.: Phys. B Condens. Matter. 540, 33–37 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    Kubota, K., Koshimizu, M., Saito, H., Asai, K.: Bull. Chem. Soc. Jpn. 88, 1567–1571 (2015)CrossRefGoogle Scholar
  9. 9.
    Li, L., Gao, Q., Lei, G., Xie, H.H., Deng, J.B., Hu, X.R.: J. Phys. Chem. Solids. 94, 30–36 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Kim, N., Kim, R., Yu, J.J.: Magn. Magn. Mater. 460, 54–60 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    Liu, Y.P., Chen, S.H., Fuh, H.R., Wang, Y.K.: Commun. Comput. Phys. 14, 174–185 (2013)CrossRefGoogle Scholar
  12. 12.
    Kaderoglu, C., Surucu, G., Erkisi, A.: J. Electron. Mater. 46, 5827–5836 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Pisarev, R.V., Siny, I.G., Smolensky, G.A.: Solid State Commun. 7, 23–25 (1969)ADSCrossRefGoogle Scholar
  14. 14.
    Kang, B., Feng, Q.G., Biswas, K.: J. Phys. D. Appl. Phys. 51, 065303 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    Hayatullah, Murtaza, G., Khenata, R., Muhammad, S., Reshak, A.H., Wong, K.M., Omran, S.B., Alahmed, Z.A.: Comput. Mater. Sci. 85, 402–408 (2014)CrossRefGoogle Scholar
  16. 16.
    Erum, N., Iqbal, M.A.: Solid State Commun. 264, 39–48 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    Moreira, R.L., Dias, A.: J. Phys. Chem. Solids. 68, 1617–1622 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Hashmi, M.R., Zafar, M., Shakil, M., Sattar, A., Ahmed, S., Ahmad, S.A.: Chin. Phys. B. 25, 117401 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Ubic, R.J.: Am. Ceram. Soc. 90, 3326 (2007)CrossRefGoogle Scholar
  20. 20.
    Verma, A.S., Kumar, A.: J. Alloys Compd. 541, 210–214 (2012)CrossRefGoogle Scholar
  21. 21.
    Jiang, L.Q., Guo, J.K., Liu, H.B., Zhu, M., Zhou, X., Wu, P., Li, C.H.: J. Phys. Chem. Solids. 67, 1531–1536 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Mubarak, A.A., Al-Omari, S.: J. Magn. Magn. Mater. 382, 211–218 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Oleaga, A., Salazar, A., Skrzypek, D.: J. Alloys Compd. 629, 178–183 (2015)CrossRefGoogle Scholar
  24. 24.
    Huang, H.M., Jiang, Z.Y., Yang, J.T., Xiong, Y.C., He, Z.D., Zhu, Z.W., Laref, A.: Chin. J. Phys. 58, 132–136 (2019)CrossRefGoogle Scholar
  25. 25.
    Wang, X.L.: Phys. Rev. Lett. 100, 156404 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Wang, X.L.: Natl. Sci. Rev. 4, 252 (2017)Google Scholar
  27. 27.
    Huang, H.M., Jiang, Z.Y., Lin, Y.M., Zhou, B., Zhang, C.K.: Appl. Phys. Express. 10, 123002 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Huang, H.M., Zhu, Z.W., Zhang, C.K., He, Z.D., Luo, S.: J. Appl. Phys. A. 124, 284 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    Wang, F.F.Y., Kestigian, M.: J. Appl. Phys. 37, 975 (1966)ADSCrossRefGoogle Scholar
  30. 30.
    Zinenko, V.I., Zamkova, N.G., Sofronova, S.N.: J. Exp. Theor. Phys. 96, 747–756 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    Onishi, T.: Polyhedron. 28, 1792–1795 (2009)CrossRefGoogle Scholar
  32. 32.
    Duan, C.G., Sabiryanov, R.F., Liu, J.J., Mei, W.N., Dowben, P.A., Hardy, J.R.: Phys. Rev. Lett. 94, 237201 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    Zhong, C.G., Lu, X.L., Wan, Y.C., Min, Y., Zhao, Z.Y., Zhou, P.X., Dong, Z.C., Liu, J.M.: J. Magn. Magn. Mater. 466, 406–410 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    Shi, L.B., Zhang, Y.Y., Xiu, X.M., Dong, H.K.: Carbon. 134, 103–111 (2018)CrossRefGoogle Scholar
  35. 35.
    Bussy, A., Pizzi, G., Gibertini, M.: Phys. Rev. B. 96, 165438 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    Blöchl, P.E.: Phys. Rev. B. 50, 17953 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    Kresse, G., Furthmüller, J.: Comput. Mater. Sci. 6, 15–50 (1996)CrossRefGoogle Scholar
  38. 38.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    Anisimov, V.I., Zaanen, J., Andersen, O.K.: Phys. Rev. B. 44, 943 (1991)ADSCrossRefGoogle Scholar
  40. 40.
    Kulik, H.J., Cococcioni, M., Scherlis, D.A., Marzari, N.: Phys. Rev. Lett. 97, 103001 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    Maldonado, F., Maza, L., Stashans, A.: J. Phys. Chem. Solids. 100, 1–8 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    Maldonado, F., Stashans, A.: J. Phys. Chem. Solids. 102, 136–141 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    Zhang, X.D., Lv, Y., Liu, C., Wang, F., Jiang, W.: Mater. Des. 133, 476–486 (2017)CrossRefGoogle Scholar
  44. 44.
    Zhang, X.D., Huang, W.Y., Ma, H., Yu, H., Jiang, W.: Solid State Commun. 284-286, 75–83 (2018)ADSCrossRefGoogle Scholar
  45. 45.
    Mehmood, N., Ahmad, R., Murtaza, G.: J. Supercond. Nov. Magn. 30, 2481–2488 (2017)CrossRefGoogle Scholar
  46. 46.
    Huang, Y.C., Guo, X.F., Ma, Y.L., Shao, H.B., Xiao, Z.B.: Phys. B. 548, 27–33 (2018)ADSCrossRefGoogle Scholar
  47. 47.
    Fine, M.E., Brown, M.D., Marcus, H.L.: Scr. Metall. 18, 951–956 (1984)CrossRefGoogle Scholar
  48. 48.
    Huang, H.M., Luo, S.J., Xiong, Y.C.: J. Magn. Magn. Mater. 438, 5–11 (2017)ADSCrossRefGoogle Scholar
  49. 49.
    Allali, D., Bouhemadou, A., Zerarga, F., Ghebouli, M.A., Bin-Omran, S.: Comput. Mater. Sci. 60, 217–223 (2012)CrossRefGoogle Scholar
  50. 50.
    Curtarolo, S., Setyawan, W., Hart, G.L.W., Jahnatek, M., Chepulskii, R.V., Taylor, R.H., Wang, S., Xue, J., Yang, K., Levy, O., Mehl, M.J., Stokes, H.T., Demchenko, D.O., Morgan, D.: Comput. Mater. Sci. 58, 218–226 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • H. M. Huang
    • 1
    Email author
  • C. X. Yu
    • 1
  • Z. Y. Jiang
    • 2
  • S. J. Luo
    • 1
  • Y. J. Hu
    • 1
  1. 1.School of ScienceHubei University of Automotive TechnologyShiyanChina
  2. 2.Institute of Modern Physics and Shaanxi Key Laboratory for Theoretical Physics FrontiersNorthwest UniversityXi’anChina

Personalised recommendations