Effect of VZn/VO on Stability, Magnetism, and Electronic Characteristic of Oxygen Ions for Li-Doped ZnO

  • Qingyu HouEmail author
  • Yajing Liu
  • Cong Li
  • Hongshuai Tao
Review Paper


The effects of Zn/O vacancy (VZn/VO) and different proportions of Li/VZn on the magnetism of Li-doped ZnO are analyzed through first-principle calculation by using generalized gradient approximation+ U (GGA + U) under density functional theory. Results reveal that Li-doped ZnO with VZn can realize ferromagnetic long-range order and has a Curie temperature above room temperature. Under different proportions of Li/VZn (i.e., 1:1, 1:2, and 2:2) in ZnO (2 × 2 × 4), the doping system containing 2Li/2VZn (Zn28Li2O32) shows the greatest magnetic moment and the smallest differential charge density. These characteristics pave the way for enhancing the magnetic properties of dilute magnetic semiconductors. The oxygen atoms in Zn28Li2O32 show acceptor and donor characteristics and exist in the forms of itinerant electrons (O1−) and local electrons (O2−), which have different effects on Zn28Li2O32 magnetism. The spin-polarization double-exchange effect among the unpaired itinerant electron (O1−) orbit, local electron (O2−) orbit, and unpaired Zn-3d electron orbit is the origin of magnetism for Li-doped ZnO with VZn. By contrast, the doping systems of Li-doped ZnO with VO are nonmagnetic, rendering such systems inapplicable.


Li doping and Zn vacancy/O vacancy ZnO Magnetism First-principles 


Funding Information

This work was supported by the National Natural Science Foundation of China (Grant nos. 61366008, 61664007, and 11805105) and the Science and Technology Major Project of Inner Mongolia Automomous Region (2018-810).


  1. 1.
    Ohno, H.: Making nonmagnetic semiconductors ferromagnetic. Sci. 281, 951–956 (1998)CrossRefGoogle Scholar
  2. 2.
    Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Sci. 287, 1019–1022 (2000)CrossRefGoogle Scholar
  3. 3.
    Dietl, T.: A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010)CrossRefGoogle Scholar
  4. 4.
    Coey, J.M.D., Venkatesan, M., Fitzgerald, C.B.: Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173–179 (2005)CrossRefGoogle Scholar
  5. 5.
    Kuroda, S., Nishizawa, N., Takita, K., Mitome, M., Bando, Y., Osuch, K., Dietl, T.: Origin and control of high-temperature ferromagnetism in semiconductors. Nat. Mater. 6, 440–446 (2007)CrossRefGoogle Scholar
  6. 6.
    Philip, J., Punnoose, A., Kim, B.I., Reddy, K.M., Layne, S., Holmes, J.O., Satpati, B., Leclair, P.R., Santos, T.S., Moodera, J.S.: Carrier-controlled ferromagnetism in transparent oxide semiconductors. Nat. Mater. 5, 298–304 (2006)CrossRefGoogle Scholar
  7. 7.
    Venkatesan, M., Fitzgerald, C.B., Coey, J.M.D.: Thin films: unexpected magnetism in a dielectric oxide. Nature. 430, 630–630 (2004)CrossRefGoogle Scholar
  8. 8.
    Xu, X., Xu, C., Dai, J., Hu, J., Li, F., Zhang, S.: Size dependence of defect-induced room temperature ferromagnetism in undoped ZnO nanoparticles. J. Phys. Chem. C. 116, 8813–8818 (2012)CrossRefGoogle Scholar
  9. 9.
    Kittelstved, K.R., Liu, W.K., Gamelin, D.R.: Electronic structure origins of polarity dependent high-TC ferromagnetism in oxide-diluted magnetic semiconductors. Nat. Mater. 5, 291–297 (2006)CrossRefGoogle Scholar
  10. 10.
    Xing, G.Z., Lu, Y.H., Tian, Y.F., Yi, J.B., Lim, C.C., Li, Y.F., Li, G.P., Wang, D.D., Yao, B., Ding, J.: Defect-induced magnetism in undoped wide band gap oxides: zinc vacancies in ZnO as an example. AIP Adv. 1, 022152 (2011)CrossRefGoogle Scholar
  11. 11.
    Khalid, M., Ziese, M., Setzer, A., Esquinazi, P., Lorenz, M., Hochmuth, H., Grundmann, M., Spemann, D., Butz, T., Brauer, G.: Defect-induced magnetic order inpure ZnO films. Phys. Rev. B: Condens. Matter Mater. Phys. 80, 035331 (2009)CrossRefGoogle Scholar
  12. 12.
    Galland, D., Herve, A.: ESR spectra of the zinc vacancy in ZnO. Phys. Lett. A. 33(1), 1 (1970)CrossRefGoogle Scholar
  13. 13.
    Wang, Q., Sun, Q., Chen, G., Kawazoe, Y., Jena, P.: Vacancy-induced magnetism in ZnOthin films and nanowires. Phys. Rev. B. 77, 205411 (2008)CrossRefGoogle Scholar
  14. 14.
    Pan, F., Song, C., Liu, X.J., Yang, Y.C., Zeng, F.: Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films. Mater. Sci. Eng. R. 62, 1–35 (2008)CrossRefGoogle Scholar
  15. 15.
    Lee, H.J., Jeong, S.Y., Cho, C.R., Park, C.H.: Study of diluted magnetic semiconductor: co-doped ZnO. Appl. Phys. Lett. 81, 4020–4022 (2002)CrossRefGoogle Scholar
  16. 16.
    Wang, X.J., Vlasenko, L.S., Pearton, S.J., Chen, W.M., Buyanova, I.A.: Oxygen and zinc vacancies in as-grown ZnO single crystals. J. Phys. D. Appl. Phys. 42, 175411 (2009)CrossRefGoogle Scholar
  17. 17.
    Lina, Y.J., Wang, M.S., Liub, C.J., Huang, H.J.: Defects, stress and abnormal shift of the (002) diffraction peak for Li-doped ZnO films. Appl. Surf. Sci. 256, 7623–7627 (2010)CrossRefGoogle Scholar
  18. 18.
    Carvalho, A., Alkauskas, A., Pasquarello, A., Tagantsev, A.K., Setter, N.: A hybrid density functional study of lithium in ZnO: stability, ionization levels, and diffusion. Phys. Rev. B. 80, 195205 (2009)CrossRefGoogle Scholar
  19. 19.
    Yi, J.B., Lim, C.C., Xing, G.Z., Fan, H.M., Van, L.H., Huang, S.L., Yang, K.S., Huang, X.L., Qin, X.B., Wang, B.Y., Wu, T., Wang, L., Zhang, H.T., Gao, X.Y., Liu, T., Wee, A.T.S., Feng, Y.P., Ding, J.: Ferromagnetism in dilute magnetic semiconductors through defect engineering: li-doped ZnO. Phys. Rev. Lett. 104, 137201 (2010)CrossRefGoogle Scholar
  20. 20.
    Chen, Y.F., Song, Q.G., Yan, H.Y.: Ferromagnetic properties, electronic structures, and formation energies of Zn vacancy monodoping and (Zn vacancy, Li) codoped ZnO by first principles study. Comput. Mater. Sci. 50, 2157–2161 (2011)CrossRefGoogle Scholar
  21. 21.
    Guan, X.H., Cai, N.N., Yang, C.H., Chen, J., Lu, P.F.: Magnetic properties of ZnO nanowires with Li dopants and Zn vacancies. Thin Solid Films. 605, 273–276 (2016)CrossRefGoogle Scholar
  22. 22.
    Vidya, R., Ravindran, P., Fjellvag, H.: Ab-initio studies on Li doping, Li-pairs, and complexes between Li and intrinsic defects in ZnO. J. Appl. Phys. 111, 123713 (2012)CrossRefGoogle Scholar
  23. 23.
    Wu, L.Q., Li, Y.C., Li, S.Q., Li, Z.Z., Tang, G.D., Qi, W.H., Xue, L.C., Ge, X.S., Ding, L.L.: Method for estimating ionicities of oxides using O1s photoelectron spectra. AIP Adv. 5, 097210 (2015)CrossRefGoogle Scholar
  24. 24.
    Cohen, R.E.: Origin of ferroelectricity in perovskite oxides. Nature. 358, 136 (1992)CrossRefGoogle Scholar
  25. 25.
    Cohen, R.E., Krakauer, H.: Lattice dynamics and origin of ferroelectricity in BaTiO3: linearized-augmented-plane-wave total-energy calculations. Phys. Rev. B. 42, 6416–6423 (1990)CrossRefGoogle Scholar
  26. 26.
    Wu, L.Q., Li, S.Q., Li, Y.C., Li, Z.Z., Tang, G.D., Qi, W.H., Xue, L.C., Ding, L.L., Ge, X.S.: Appl. Phys. Lett. 108, 021905 (2016)CrossRefGoogle Scholar
  27. 27.
    Hou, Q.Y., Jia, X.F., Xu, Z.C., Zhao, C.W., Qu, L.F.: Effects of Li doping and point defect on the magnetism of ZnO. Ceram. Int. 44, 1376 (2018)CrossRefGoogle Scholar
  28. 28.
    Sundaresan, A., Bhargavi, R., Rangarajan, N., Siddesh, U., Rao, C.N.R.: Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B. 74, 161306(R) (2006)CrossRefGoogle Scholar
  29. 29.
    Awan, S.U., Hasanain, S.K., Bertino, M.F., Jaffari, G.H.: Ferromagnetism in Li doped ZnO nanoparticles: the role of interstitial Li. J. Appl. Phys. 112, 103924 (2012)CrossRefGoogle Scholar
  30. 30.
    Ran, C.J., Yang, H.L., Wang, Y.K., Hassan, F.M., Zhou, L.G., Xu, X.G., Jiang, Y.: Chin. Phys. B. 22, 067503 (2013)CrossRefGoogle Scholar
  31. 31.
    Ma, X.G., Wu, Y., Lv, Y.H., Zhu, Y.F.: Correlation effects on lattice relaxation and electronic structure of ZnO within the GGA+ U formalism. J. Phys. Chem. C. 117, 26029–26039 (2013)CrossRefGoogle Scholar
  32. 32.
    Li, H.L., Lv, Y.B., Li, J.Z., Yu, K.: First-principles study of p-type conductivity of N-Al/ Ga/In co-doped ZnO. Phys. Scr. 90, 025803 (2015)CrossRefGoogle Scholar
  33. 33.
    Chand, P., Gaur, A., Kumar, A.: Structural, optical, and ferroelectric behavior of Zn1−xLixO (0≤x≤0.09) nanostructures. J. Alloys Compd. 585, 345–351 (2014)CrossRefGoogle Scholar
  34. 34.
    Wardle, M.G., Goss, J.P., Briddon, P.R.: Theory of Li in ZnO: a limitation for Li-based p-type doping. Phys. Rev. B. 71, 155205 (2005)CrossRefGoogle Scholar
  35. 35.
    Na, P.S., Smith, M.F., Kim, K., Du, M.H., Wei, S.H., Zhang, S.B., Limpijumnong, S.: First principles study of native defects in anatase. TiO2. Phys. Rev. B. 73, 125205 (2006)CrossRefGoogle Scholar
  36. 36.
    Boudjouan, F., Chelouche, A., Touam, T., Djouadi, D., Mahio, R., Chadeyron, G., Fischer, A., Boudrioua, A.: Doping effect investigation of Li-doped nanostructured ZnO thin films prepared by sol–gel process. J. Mater. Sci. Mater. Electron. 27, 8040–8046 (2016)CrossRefGoogle Scholar
  37. 37.
    Dhananjay Nagaraju, J., Krupanidhi, S.B.: Off-centered polarization and ferroelectric phase transition in Li-doped ZnO thin films grown by pulsed-laser ablation. J. Appl. Phys. 101, 104104 (2007)CrossRefGoogle Scholar
  38. 38.
    Lu, J.G., Zhang, Y.Z., Ye, Z.Z., Zeng, Y.J., He, H.P., Zhu, L.P., Huang, J.Y., Wang, L., Yuan, J., Zhao, B.H., Li, X.H.: High-mobility thin-film transistor with amorphous in Ga Zn O 4 channel fabricated by room temperature rf-magnetron sputtering. Appl. Phys. Lett. 89, 112113 (2006)CrossRefGoogle Scholar
  39. 39.
    Pickett, W.E., Moodera, J.S.: Half metallic magnets. Phys. Today. 54, 39–44 (2001)CrossRefGoogle Scholar
  40. 40.
    Srikant, V., Clarke, D.R.: On the optical band gap of zinc oxide. J. Appl. Phys. 83, 5447 (1998)CrossRefGoogle Scholar
  41. 41.
    Diakonov, M.I., Yang, J.: (translated by), Spin Physics in Semiconductors, vol. 2. Science Press, Beijing (2010)Google Scholar
  42. 42.
    Fan, J.C., Sreekanth, K.M., Xie, Z., Chang, S.L., Rao, K.V.: P-type ZnO materials: theory, growth, properties and devices. Prog. Mater. Sci. 58, 874–985 (2013)CrossRefGoogle Scholar
  43. 43.
    Wang, T., Bristowe, P.D.: Controlling Ag diffusion in ZnO by donor doping: a first principles study. Acta Mater. 137, 115–122 (2017)CrossRefGoogle Scholar
  44. 44.
    Zubiaga, A., Plazaola, F., Garcia, J.A., Tuomisto, F., Sanjosé, V.M., Zaera, R.T.: Positron annihilation lifetime spectroscopy of ZnO bulk samples. Phys. Rev. B. 76, 085202 (2007)CrossRefGoogle Scholar
  45. 45.
    Phillips, J.C.: Ionicity of the chemical bond in crystals. Rev. Mod. Phys. 42, 317–356 (1970)CrossRefGoogle Scholar
  46. 46.
    Ji, D.H., Tang, G.D., Li, Z.Z., Hou, X., Han, Q.J., Qi, W.H., Bian, R.R., Liu, S.R.: Quantum mechanical method for estimating ionicity of spinel ferrites. J. Magn. Magn. Mater. 326, 197 (2013)CrossRefGoogle Scholar
  47. 47.
    Ruderman, M.A., Kittel, C.: Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99 (1954)CrossRefGoogle Scholar
  48. 48.
    Kasuya, T.: A theory of metallic ferro-and antiferromagnetism on Zener’s model. Prog. Theor. Phys. 16, 45–57 (1956)CrossRefzbMATHGoogle Scholar
  49. 49.
    Yosida, K.: Magnetic properties of Cu-Mn alloys. Phys. Rev. 106, 893–898 (1956)CrossRefGoogle Scholar
  50. 50.
    Assadi, M.H.N., Zhang, Y.B., Li, S.: Predominant role of defects in magnetic interactions in codoped ZnO: Co. J. Phys. Condens. Matter. 22, 296004 (2010)CrossRefGoogle Scholar
  51. 51.
    Anh, H.V., Cuong, N.H., Tu, N., Tuan, L.M., Nui, D.X., Dung, N.D., et al.: Understanding ferromagnetism in C-doped CdS: Monte Carlo simulation. J. Alloys Compd. 695, 1624–1630 (2017)CrossRefGoogle Scholar
  52. 52.
    Pan, H., Feng, Y.P., Wu, Q.Y., Huang, Z.G., Lin, J.: Magnetic properties of carbon doped CdS: a first-principles and Monte Carlo study. Phys. Rev. B. 77, 125211 (2008)CrossRefGoogle Scholar
  53. 53.
    Wu, Q.Y., Chen, Z.G., Wu, R., Xu, G.G., Huang, Z.G., Zhang, F.M., Du, Y.W.: First-principles and Monte Carlo combinational study on Zn1-xCoxO diluted magnetic semiconductor. Solid State Commun. 142, 242 (2007)CrossRefGoogle Scholar
  54. 54.
    Kotze J., Physics, arXiv: 0803.0217v1 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of ScienceInner Mongolia University of TechnologyHohhotPeople’s Republic of China
  2. 2.Inner Mongolia Key Laboratory of Thin Film and CoatingsHohhotPeople’s Republic of China

Personalised recommendations