Advertisement

Water-to-PEG Variation: Morphology and Hyperthermic Behaviour of Iron Oxide

  • S. Arunima Rajan
  • Madhulika Sharma
  • Niroj Kumar SahuEmail author
Original Paper
  • 22 Downloads

Abstract

Magnetite (Fe3O4) nanoparticles (NPs) with various morphologies obtained by varying solvent (water)-to-surfactant (polyethylene glycol, PEG) ratios have been investigated for magnetic hyperthermia (MHT) application. The water-to-PEG ratio influenced the size, shape, and chemical composition of the NPs, which changes their magnetic properties and hyperthermia (HPT) response. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) studies reveal the formation of well crystalline inverse spinel structure of Fe3O4 with some Fe0 phases. Morphology of the NPs varies from nearly spherical to elongated to pseudohexagonal to cluster with an increased concentration of PEG. The NPs possess enhanced saturation magnetization ranging from 90 to 98 emu/g. The HPT studies indicated that the NPs show an enough specific absorption rate (SAR) under alternating magnetic field suitable for biological application with hexagonal Fe3O4 being more efficient.

Keywords

PEGylation Magnetite Nanoparticles Anisotropy Specific absorption rate Magnetic hyperthermia 

Notes

Funding Information

The authors received financial support from DST-SERB (project grant no. ECR/2016/000301).

References

  1. 1.
    Nemati, Z., Alonso, J., Martinez, L.M., Khurshid, H., Garaio, E., Garcia, J.A., Phan, M.H., Srikanth, H.: Enhanced magnetic hyperthermia in iron oxide nano-octopods: size and anisotropy effects. J. Phys. Chem. C. 120, 8370–8379 (2016).  https://doi.org/10.1021/acs.jpcc.6b01426 CrossRefGoogle Scholar
  2. 2.
    Jalilian, A.R., Panahifar, A., Mahmoudi, M., Akhlaghi, M., Simchi, A.: Preparation and biological evaluation of [67Ga]-labeled- superparamagnetic nanoparticles in normal rats. Radiochim. Acta. 97, 51–56 (2009).  https://doi.org/10.1524/ract.2009.1566 CrossRefGoogle Scholar
  3. 3.
    Barrow, M., Taylor, A., Murray, P., Rosseinsky, M.J., Adams, D.J.: Design considerations for the synthesis of polymer coated iron oxide nanoparticles for stem cell labelling and tracking using MRI. Chem. Soc. Rev. 44, 6733–6748 (2015).  https://doi.org/10.1039/c5cs00331h CrossRefGoogle Scholar
  4. 4.
    Lartigue, L., Alloyeau, D., Kolosnjaj-Tabi, J., Javed, Y., Guardia, P., Riedinger, A., Péchoux, C., Pellegrino, T., Wilhelm, C., Gazeau, F.: Biodegradation of iron oxide nanocubes: high-resolution in situ monitoring. ACS Nano. 7, 3939–3952 (2013).  https://doi.org/10.1021/nn305719y CrossRefGoogle Scholar
  5. 5.
    Suk, J.S., Xu, Q., Kim, N., Hanes, J., Ensign, L.M.: PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016).  https://doi.org/10.1016/j.addr.2015.09.012 CrossRefGoogle Scholar
  6. 6.
    Ling, D., Hyeon, T.: Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small. 9, 1450–1466 (2013).  https://doi.org/10.1002/smll.201202111 CrossRefGoogle Scholar
  7. 7.
    Cho, M., Cervadoro, A., Ramirez, M., Stigliano, C., Brazdeikis, A., Colvin, V., Civera, P., Key, J., Decuzzi, P.: Assembly of iron oxide nanocubes for enhanced cancer hyperthermia and magnetic resonance imaging. Nanomaterials. 7, 1–12 (2017).  https://doi.org/10.3390/nano7040072 CrossRefGoogle Scholar
  8. 8.
    Kumar, C.S.S.R., Mohammad, F.: Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63, 789–808 (2011).  https://doi.org/10.1016/j.addr.2011.03.008 CrossRefGoogle Scholar
  9. 9.
    Fatima, H., Lee, D.W., Yun, H.J., Kim, K.S.: Shape-controlled synthesis of magnetic Fe3O4 nanoparticles with different iron precursors and capping agents. RSC Adv. 8, 22917–22923 (2018).  https://doi.org/10.1039/c8ra02909a CrossRefGoogle Scholar
  10. 10.
    Khurshid, H., Alonso, J., Nemati, Z., Phan, M.H., Mukherjee, P.: Anisotropy effects in magnetic hyperthermia: a comparison between spherical and cubic exchange-coupled FeO / Fe3O4 nanoparticles. J. Appl. Phys. 117, 1–5 (2015).  https://doi.org/10.1063/1.4919250 CrossRefGoogle Scholar
  11. 11.
    Guardia, P., Di Corato, R., Lartigue, L., Wilhelm, C., Espinosa, A., Garcia-, M., Gazeau, F., Manna, L., Pellegrino, T.: Water soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano. 6, 3080–3091 (2012).  https://doi.org/10.1021/nn2048137 CrossRefGoogle Scholar
  12. 12.
    Das, R., Alonso, J., Porshokouh, Z.N., Kalappattil, V., Torres, D., Phan, M., Garaio, E., Jose, A., Luis, J., Llamazares, S., Srikanth, H.: Tunable high aspect ratio iron oxide nanorods for enhanced hyperthermia. J. Phys. Chem. C. 120, 10086–10093 (2016).  https://doi.org/10.1021/acs.jpcc.6b02006 CrossRefGoogle Scholar
  13. 13.
    Simeonidis, K., Morales, M.P., Marciello, M., Angelakeris, M., Chubykalo-fesenko, O., Serantes, D.: In-situ particles reorientation during magnetic hyperthermia application: shape matters twice. Sci. Rep. 6, 1–11 (2016).  https://doi.org/10.1038/srep38382 CrossRefGoogle Scholar
  14. 14.
    Sahu, N.K., Gupta, J., Bahadur, D.: PEGylated FePt–Fe 3 O 4 composite nanoassemblies (CNAs): in vitro hyperthermia, drug delivery and generation of reactive oxygen species (ROS). Dalton Trans. 44, 9103–9113 (2015).  https://doi.org/10.1039/C4DT03470H CrossRefGoogle Scholar
  15. 15.
    Rani, B., Punniyakoti, S., Sahu, N.K.: Polyol asserted hydrothermal synthesis of SnO2 nanoparticles for the fast adsorption and photocatalytic degradation of methylene blue cationic dye. New J. Chem. 42, 943–954 (2018).  https://doi.org/10.1039/c7nj03341a CrossRefGoogle Scholar
  16. 16.
    Li, C., Wei, R., Xu, Y., Sun, A., Wei, L.: Synthesis of hexagonal and triangular Fe3O4 nanosheets via seed-mediated solvothermal growth. Nano Res. 7, 536–543 (2014).  https://doi.org/10.1007/s12274-014-0421-3 CrossRefGoogle Scholar
  17. 17.
    Liu, X.L., Fan, H.M., Yi, J.B., Yang, Y., Choo, E., S, G., Xue, J.M., Fana, D.D., Ding, J.: Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. J. Mater. Chem. 22, 8235–8244 (2012).  https://doi.org/10.1039/c2jm30472d. CrossRefGoogle Scholar
  18. 18.
    Cullity, B.D., Graham, C.D.: Introduction to magnetic materials, vol. 103. Wiley-IEEE Press ISBN 0-471- 47741-9Google Scholar
  19. 19.
    Ge, S., Shi, X., Sun, K., Li, C., Uher, C., Baker, J.R., Banaszak Holl, M.M., Orr, B.G.: Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. J. Phys. Chem. C. 113, 13593–13599 (2009).  https://doi.org/10.1021/jp902953t CrossRefGoogle Scholar
  20. 20.
    Guardia, P., Pérez-Juste, J., Labarta, A., Batlle, X., Liz-Marzán, L.M.: Heating rate influence on the synthesis of iron oxide nanoparticles: the case of decanoic acid. ChemComm. 46, 6108–6110 (2010).  https://doi.org/10.1039/c0cc01179g Google Scholar
  21. 21.
    Ozel, F., Kockar, H., Karaagac, O.: Growth of Iron oxide nanoparticles by hydrothermal process: effect of reaction parameters on the nanoparticle size. J. Supercond. Nov. Magn. 28, 823–829 (2015).  https://doi.org/10.1007/s10948-014-2707-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for Nanotechnology ResearchVellore Institute of TechnologyVelloreIndia
  2. 2.School of Advanced SciencesVellore Institute of TechnologyVelloreIndia
  3. 3.Department of Metallurgical Engineering and Material ScienceIIT, BombayMumbaiIndia

Personalised recommendations