Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 12, pp 3845–3851 | Cite as

Mid-plateau State as a Topological Phase in Dimerized Spin-1/2 Two-Leg Ladders

  • F. Shafieinejad
  • J. Hasanzadeh
  • S. MahdavifarEmail author
Article
  • 34 Downloads

Abstract

The spin-1/2 two-leg ladders with dominant spatially modulated rung exchanges are known as the dimerized ladders. In the limit of strong rung exchange, the ground state of the system is in the rung-singlet (RS) gapped phase. Applying an external magnetic field creates two additional new gapped phases in the ground-state phase diagram of the model beside the existence of the two trivial gapless Luttinger liquid (LL) phases. It is already specified that the magnetization curve of the system exhibits a plateau at magnetization which is equal to the half of the saturation value in one of the non-trivial gapped phases known as the mid-plateau state. Here, we calculate the entanglement entropy and entanglement spectrum (ES) for finite ladder systems using the numerical Lanczos method. In fact, it has been suggested that the topological properties of the ground state can be reflected by specific degeneracy of the ES. We investigate the gapped RS and the mid-plateau phases where our outcomes show even degeneracy in the ES in the non-trivial RS and mid-plateau gapped phases is an indication of the symmetry-protected topological phases. In addition, we argue about the difference between the results of ES for various divisions of the ladder system.

Keywords

Entanglement spectrum Spin-1/2 ladder systems Topological phase Dimerization 

Notes

References

  1. 1.
    Sachdev, S.: Quantum Phase Transition. Cambridge University Press (2011)Google Scholar
  2. 2.
    Landau, L.D., Lifschitz, E.M.: Statistical Physics Theoretical Physics, vol. 5. Pergamon, London (1958)Google Scholar
  3. 3.
    Klitzing, K.V., Dorda, G., Pepper, M.: . Phys. Rev. Lett. 45, 494 (1980)ADSCrossRefGoogle Scholar
  4. 4.
    Wen, X.G.: Quantum Field Theory of Many-Body Systems. Oxford (2004)Google Scholar
  5. 5.
    Haldane, F.D.M.: . Phys. Rev. Lett. 50, 1153 (1983)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Gu, Z.-C., Wen, X.-G.: . Phys. Rev. B 80, 155131 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Pollmann, F., Turner, A.M., Berg, E., Oshikawa, M.: . Phys. Rev. B 81, 064439 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Turner, A.M., Pollmann, F., Berg, E.: . Phys. Rev. B 83, 075102 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Pollmann, F., Berg, E., Turner, A.M., Oshikawa, M.: . Phys. Rev. B 85, 075125 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Hida, K.: . Phys. Rev. Lett. 83, 3297 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    Dagotto, E., Rice, T.M.: . Science 271, 618 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    Kitaev, A., Preskill, J.: . Phys. Rev. Lett. 96, 110404 (2006)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Levin, M., Wen, X.G.: . Phys. Rev. Lett. 96, 110405 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Zhang, Y., Grover, T., Turner, A., Oshikawa, M., Vishwanath, A.: . Phys. Rev. B 85, 235151 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Li, Haldane, F.D.M.: . Phys. Rev. Lett. 101, 010504 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Fath, G., Legeza, O., Solyom, J.: . Phys. Rev. B 63, 134403 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    Anfuso, F., Rosch, A.: . Phys. Rev. B 75, 144420 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Poilblanc, D.: . Phys. Rev. Lett. 105, 077202 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Furukawa, S., Baek Kim, Y.: . Phys. Rev. B 83, 085112 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Läuchli, A.M., Schliemann, J.: . Phys. Rev. B 85, 054403 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Li, X., Zhao, E., Liu, WV: . Nat Commun 4, 1523 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Liu, Z-X, Yang, Z-B, Han, Y-J, Yi, W, Wen, X-G: . Phys. Rev. B 86, 195122 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Lundgren, R, Fuji, Y, Furukawa, S, Oshikawa, M.: . Phys. Rev. B 88, 245137 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Chen, X., Fradkin, E.: J. Stat. Mech. p08013 (2013)Google Scholar
  25. 25.
    Amiri, F., Sun, G., Mikeska, H. -J., Vekua, T.: . Phys. Rev. B 92, 184421 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Santos, R.A., Jian, C.-M., Lundgren, R.: . Phys. Rev. B 93, 245101 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Lundgren, R.: . Phys. Rev. B 93, 125107 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Plekhanov, K, Roux, G, Hur, KL: . Phys. Rev. B 95, 045102 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    Hur, K.L., Soret, A., Yang, F.: . Phys. Rev. B 96, 205109 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    Luo, Q., Hu, S., Zhao, J., Metavitsiadis, A., Eggert, S., Wang, X.: . Phys. Rev. B 97, 214433 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    Japaridze, G.I., Pogosyan, E.: . J. Phys. Condens. Matter. 18, 9297 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    Vekua, T., Japaridze, G.I., Mikeska, H.-J.: . Phys. Rev. B 67, 064419 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    Japaridze, G.I., Langari, A., Mahdavifar, S.: . J. Physis.:Condens. Matter 19, 076201 (2007)ADSGoogle Scholar
  34. 34.
    Japaridze, G.I., Mahdavifar, S.: . Eur. Phys. J. B 68, 59–66 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    Nemati, S., Batebi, S., Mahdavifar, S.: . Eur. phys. J. B 83, 329 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    Kallin, A.B., Gonzales, I., Hastings, M.B., Melko, R.G.: . Phys. Rev. Lett. 103, 117203 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceIslamic Azad UniversityTakestanIran
  2. 2.Department of PhysicsUniversity of GuilanRashtIran

Personalised recommendations