Sonochemical Synthesis of CoFe2-xNdxO4 Nanoparticles: Structural, Optical, and Magnetic Investigation
- 86 Downloads
- 2 Citations
Abstract
This investigation deals with CoFe2-xNdxO4 (x ≤ 0.2) nanoparticles (NPs) fabricated by sonochemically. The purity of all products was verified via X-ray powder diffraction. The crystallite size of the samples was calculated as less 12 nm. The spectral analyses also confirmed the presence of spinel ferrites. Both morphology and chemical purity of the spinel ferrite systems were confirmed by SEM, EDX, and elemental mapping analyses. The analyses of magnetization versus applied magnetic field, M(H), were performed. The following magnetic parameters like saturation magnetization Ms, squareness ratio (SQR = Mr / Ms), magnetic moment nB, coercivity Hc, and remanence Mr have been evaluated. The M(H) curves revealed the soft ferromagnetic nature for all CoFe2-xNdxO4 NPs. It is showed that the Nd3+ substitutions significantly affect the magnetization data. A decreasing trend in the Hc, Ms, nB, and Mr values was detected with Nd3+ substitution.
Keywords
Rare earth Magnetic nanomaterials Spinel ferrites Magnetic properties Optical propertiesNotes
Funding Information
The study is supported by the Institute for Research and Medical Consultations (project application no. 2018-IRMC-S-2) of Imam Abdulrahman Bin Faisal University (IAU, Saudi Arabia).
References
- 1.Lenin, N., Sakthipandi, K., Kanna, R.R., Rajesh, J.: Effect of neodymium ion on the structural, electrical and magnetic properties of nanocrystalline nickel ferrite. Ceram. Int. 44, 11562–11569 (2018)CrossRefGoogle Scholar
- 2.Rezlescu, E., Rezlescu, N., Pasnicu, C., Craus, M.L., Popa, D.P.: The influence of additives on the properties of Ni-Zn ferrite used in magnetic heads. J. Magn. Magn. Mater. 117, 448–454 (1992)ADSCrossRefGoogle Scholar
- 3.Rezlescu, N., Rezlescu, L., Popa, P.D., Rezlescu, E.: Influence of additives on the properties of a Ni–Zn ferrite with low Curie point. J. Magn. Magn. Mater. 215, 194–196 (2000)ADSCrossRefGoogle Scholar
- 4.Javed, H., Iqbal, F., Agboola, P.O., Khanb, M.A., Warsi, M.F., Shakiret, I.: Ceram. Int. 45, 11125 (2019). https://doi.org/10.1016/j.ceramint.2019.02.176 CrossRefGoogle Scholar
- 5.Rezlescu, N., Rezlescu, E., Pasnicu, C., Craus, M.L.: Effects of the rare-earth ions on some properties of a nickel-zinc ferrite. J. Phys. Condens. Matter. 6, 5707–5716 (1994)ADSCrossRefGoogle Scholar
- 6.Munir, A., Ahmed, F., Saqib, M., Anis-ur-Rehman, M.: Partial correlation of electrical and magnetic properties of Nd substituted Ni–Zn nanoferrites. J. Magn. Magn. Mater. 397, 188–197 (2016)ADSCrossRefGoogle Scholar
- 7.Eltabey, M.M., Agami, W.R., Mohsen, H.T.: Improvement of the magnetic properties for Mn–Ni–Zn ferrites by rare earth Nd3+ ion substitution. J. Adv. Res. 5, 601–605 (2014)CrossRefGoogle Scholar
- 8.Shinde, T.J., Gadkari, A.B., Vasambekar, P.N.: Effect of Nd3+ substitution on structural and electrical properties of nanocrystalline zinc ferrite. J. Magn. Magn. Mater. 322, 2777–2781 (2010)ADSCrossRefGoogle Scholar
- 9.Naik, P.P., Tangsali, R.B.: Enduring effect of rare earth (Nd3+) doping and radiation on electrical properties of nanoparticle manganese zinc ferrite. J. Alloys Compd. 723, 266–275 (2017)CrossRefGoogle Scholar
- 10.Mounkachia, O., Lamouri, R., Abraime, B., Ez-Zahraouy, H., El Kenz, A., Hamedoun, M., Benyoussef, A.: Exploring the magnetic and structural properties of Nd-doped cobalt nanoferrite for permanent magnet applications. Ceram. Int. 43, 14401–14404 (2017)CrossRefGoogle Scholar
- 11.Kokare, M.K., Jadhav, N.A., Kumar, Y., Jadhav, K.M., Rathod, S.M.: Effect of Nd3+ doping on structural and magnetic properties of Ni0.5Co0.5Fe2O4 nanocrystalline ferrites synthesized by sol-gel auto combustion method. J. Alloys Compd. 748, 1053–1061 (2018)CrossRefGoogle Scholar
- 12.Yadav, R.S., Havlica, J., Masilko, J., Kalina, L., Wasserbauer, J., Hajdúchová, M., Enev, V., Kuřitka, I., Kožákova, Z.: Impact of Nd3+ in CoFe2O4 spinel ferrite nanoparticles on cation distribution, structural and magnetic properties. J. Magn. Magn. Mater. 399, 109–117 (2016)ADSCrossRefGoogle Scholar
- 13.Yadav, R.S., Mishra, P., Pandey, A.C.: Growth mechanism and optical property of ZnO nanoparticles synthesized by sonochemical method. Ultrason. Sonochem. 15, 863–868 (2008)CrossRefGoogle Scholar
- 14.Mishra, P., Yadav, R.S., Pandey, A.C.: Growth mechanism and photoluminescence property of flower-like ZnO nanostructures synthesized by starch-assisted sonochemical method. Ultrason. Sonochem. 17, 560–565 (2010)CrossRefGoogle Scholar
- 15.Suslick, K.S.: Ultrasound: its chemical, physical and biological effects. VCH Verlagsgesellschaft, Weinheim (1988)Google Scholar
- 16.Suslick, K.S., Price, G.J.: Application of ultrasound to materials chemistry. Annu. Rev. Mater. Sci. 29, 295–326 (1999)ADSCrossRefGoogle Scholar
- 17.Dahl, J.A., Maddux, B.L., Hutchison, J.E.: Toward greener nanosynthesis. Chem. Rev. 107, 2228–2269 (2007)CrossRefGoogle Scholar
- 18.Naik, P.P., Tangsali, R.B., Meen, S.S., Yusuf, S.M.: Influence of rare earth (Nd+3) doping on structural and magnetic properties of nanocrystalline manganese-zinc ferrite. Mater. Chem. Phys. 191, 215–224 (2017)CrossRefGoogle Scholar
- 19.Thakur, P., Sharma, R., Kumar, M., Katyal, S.C., Barman, P.B., Sharma, V., Sharma, P.: Structural, morphological, magnetic and optical study of co-precipitated Nd3+ doped Mn-Zn ferrite nanoparticles. J. Mang. Magn. Mater. 479, 317–325 (2019)ADSCrossRefGoogle Scholar
- 20.Nikumbh, A.K., Pawar, R.A., Nighot, D.V., Gugale, G.S., Sangale, M.D., Khanvilkar, M.B., Nagawade, A.V.: Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. J. Magn. Magn. Mater. 355, 201–209 (2014)ADSCrossRefGoogle Scholar
- 21.Persis Amaliya, A., Anand, S., Pauline, S.: Investigation on structural, electrical and magnetic properties of titanium substituted cobalt ferrite nanocrystallites. J. Magn. Magn. Mater. 467, 14–28 (2018)ADSCrossRefGoogle Scholar
- 22.Stoner, E.C., Wohlfarth, E.P.: A mechanism of magnetic hysteresis in heteregeneous alloys. Phil. Trans. R. Soc. A. 240(826), 599–642 (1948)ADSCrossRefGoogle Scholar
- 23.Almessiere, M.A., Slimani, Y., Baykal, A.: Exchange spring magnetic behavior of Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x nanocomposites fabricated by a one-pot citrate sol-gel combustion method. J. Alloys Compd. 762, 389–397 (2018)CrossRefGoogle Scholar
- 24.Duong, G.V., Hanh, N., Linh, D.V., Groessinger, R., Weinberger, P., Schafler, E., Zehetbauer, M.: Monodispersed nanocrystalline Co1–xZnxFe2O4 particles by forced hydrolysis: synthesis and characterization. J. Magn. Magn. Mater. 311, 46–50 (2007)ADSCrossRefGoogle Scholar
- 25.Slimani, Y., Almessiere, M.A., Nawaz, M., Baykal, A., Akhtar, S., Ercan, I., Belenli, I.: Effect of bimetallic (Ca, Mg) substitution on magneto-optical properties of NiFe2O4 nanoparticles. Ceram. Int. 45, 6021–6029 (2019)CrossRefGoogle Scholar
- 26.Md Amir, H., Gungunes, Y., Slimani, N., Tashkandi, H.S., El Sayed, F., Aldakheel, M., Sertkol, H., Sozeri, A., Manikandan, I., Ercan, A.B.: Mossbauer studies and magnetic properties of cubic CuFe2O4 nanoparticles. J. Supercond. Nov. Magn. 32, 557 (2018). https://doi.org/10.1007/s10948-018-4733-5 CrossRefGoogle Scholar
- 27.Baykal, A., Esir, S., Demir, A., Güner, S.: Magnetic and optical properties of Cu1-xZnxFe2O4 nanoparticles dispersed in a silica matrix by a sol-gel auto-combustion method. Ceram. Int. 41, 231–239 (2015)CrossRefGoogle Scholar
- 28.Almessiere, M.A., Demir Korkmaz, A., Slimani, Y., Nawaz, M., Ali, S., Baykal, A.: Magneto-optical properties of rare earth metals substituted Co-Zn spinel nanoferrites. Ceram. Int. 45, 3449–3458 (2019)CrossRefGoogle Scholar
- 29.Luo, G., Zhou, W., Li, J., Zhou, Z., Jiang, G., Li, W., Tang, S., Du, Y.: The influence of Nd3+ ions doping on structural, dielectric and magnetic properties of Ni–Zn ferrites. J. Mater. Sci. Mater. Electron. 28, 7259–7263 (2017)CrossRefGoogle Scholar
- 30.Lu, A.H., Salabas, E.L., Schüth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222 (2007)CrossRefGoogle Scholar
- 31.Xia, A.L., Zuo, C.H., Zhang, L.J., Cao, C.X., Deng, Y., Xu, W., Xie, M.F., Ran, S.L., Jin, C.G., Liu, X.G.: Magnetic properties, exchange coupling and novel stripe domains in bulk SrFe12O19/(Ni,Zn)Fe2O4 composites. J. Phys. D. Appl. Phys. 47, 415004 (2014)CrossRefGoogle Scholar
- 32.Slimani, Y., Güngüneş, H., Nawaz, M., Manikandan, A., El Sayed, H.S., Almessiere, M.A., Sözeri, H., Shirsath, S.E., Ercan, I., Baykal, A.: Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li-Al co-substitution. Ceram. Int. 44, 14242–14250 (2018)CrossRefGoogle Scholar
- 33.Almessiere, M.A., Slimani, Y., Baykal, A.: Structural and magnetic properties of Ce doped strontium hexaferrite. Ceram. Int. 44, 9000 (2018)CrossRefGoogle Scholar
- 34.Pervaiz, E., Gul, I.: Influence of rare earth (Gd3+) on structural, gigahertz dielectric and magnetic studies of cobalt ferrite. J. Phys. Conf. 439, 012015 (2013)CrossRefGoogle Scholar
- 35.Mirkazemi, S.M., Alamolhoda, S., Ghiami, Z.: Microstructure and magnetic properties of SrFe12O19 nano-sized powders prepared by sol-gel auto-combustion method with CTAB surfactant. J. Supercond. Nov. Magn. 28, 1551–1558 (2015)CrossRefGoogle Scholar
- 36.Li, X., Sun, R., Luo, B.Y., Zhang, A.J., Xia, A.L., Jin, C.G.: Synthesis and magnetic properties of manganese–zinc ferrite nanoparticles obtained via a hydrothermal method. J. Mater. Sci. Mater. Electron. 28, 12268–12272 (2017)CrossRefGoogle Scholar