Rapid Pyrolysis of YBa2Cu3O7-δ Films by Fluorine-Free Polymer-Assisted Chemical Solution Deposition Approach

  • X. Yang
  • W. T. WangEmail author
  • L. Liu
  • B. L. Huo
  • M. J. Wang
  • G. S. Yang
  • Z. J. Tian
  • Y. D. Xia
  • Y. ZhaoEmail author
Original Paper


A rapid pyrolysis heat treatment was proposed to prepare YBa2Cu3O7-δ (YBCO) films by a self-developed fluorine-free polymer-assisted chemical solution deposition (PA-CSD) approach. Metal acetates and polyvinyl butyral (PVB) in YBCO wet films were pyrolyzed within 30 min, which is less than one-twentieth the pyrolysis time for conventional fluorine–free CSD methods. The influence of the rapid decomposition on the microstructures of YBCO precursor films was investigated compared to conventionally pyrolyzed films. Based on the rapidly pyrolyzed films, high-temperature firing process was further optimized to fabricate epitaxially grown YBCO films. The results demonstrate that most of the defects generated in the rapid pyrolysis process can nearly be eliminated by extending firing time to 2 h, and thus the textured YBCO films with denser and smoother morphologies were obtained with superconducting transition temperature Tc of 93.3 K and critical current density Jc of 3.1 MA/cm2 at 77 K and self-field. This is almost three times of the Jc of the conventionally pyrolyzed film.


YBCO film PA-CSD Rapid pyrolysis Transition temperature Critical current density 



This work was financially supported by the Field Foundation of Pre-Research on Equipment [grant number 61409230502]; the Fundamental Research Funds for the Central Universities [grant number 2019XJ03]; the Program of International S&T Cooperation [grant number 2013DFA51050]; the National Nature Science Foundation of China [grant number 51271155, 51377138, 51702265]; the Fundamental Research Funds for the Central Universities [grant number 2682015ZT11]; and the Science and Technology Project in Sichuan Province [grant number 2017JY0057].


  1. 1.
    Takeshi, A., Izumi, H.: Review of a chemical approach to YBa2Cu3O7−x-coated superconductors metalorganic deposition using trifluoroacetates. Supercond. Sci. Technol. 71, 16 (2003)Google Scholar
  2. 2.
    Obradors, X., Puig, T., Pomar, A., Sandiumenge, F., Mestres, N., Coll, M., Cavallaro, A., et al.: Progress towards all-chemical superconducting YBa2Cu3O7- coated conductors. Supercond. Sci. Technol. S13, 19 (2006)Google Scholar
  3. 3.
    Dzick, J., Usoskin, A., Issaev, A., Knoke, J., García-Moreno, F., Sturm, K.: Critical currents in long-length YBCO-coated conductors. Supercond. Sci. Technol. 676, 14 (2001)Google Scholar
  4. 4.
    Molodyk, A., Novozhilov, M., Bitkowsky, S., Street, S., Delaney, A., Castellani, L., Ignatiev, A.: Development of MOCVD technology for integrated YBCO layer/buffer layer fabrication for coated conductors. IEEE Trans. Appl. Supercond. 19, 3196 (2009)CrossRefGoogle Scholar
  5. 5.
    Vermeir, P., Cardinael, I., Schaubroeck, J., Verbeken, K., Bäcker, M., Lommens, P., Knaepen, W., et al.: Elucidation of the Mechanism in Fluorine-Free Prepared YBa2Cu3O7-δ Coatings. Inorg. Chem. 49, 4471 (2010)CrossRefGoogle Scholar
  6. 6.
    Matsui, H., Tsukada, K., Tsuchiya, T., Sohma, M., Yamaguchi, I., Kumagai, T., Manabe, T.: Reduced crystallization time of YBCO in a fluorine-free MOD process using uv-lamp irradiation. Physica C. 960, 471 (2011)Google Scholar
  7. 7.
    Jia, Q.X., McCleskey, T.M., Burrell, A.K., Lin, Y., Collis, G.E., Wang, H., Li, A.D., et al.: Polymer-assisted deposition of metal-oxide films. Nat. Mater. 529, 3 (2004)Google Scholar
  8. 8.
    Zhang, Q.Q., Zhao, S.C., Liu, Z.Y., Rui, R.S., Qiu, W.B., Guo, Y.Q., Li, M.J.: Rapid thermal decomposition for YBa2Cu3O7−δ films derived by DEA-modified TFA-MOD. J. Phys. Conf. Ser. 012055, 507 (2014)Google Scholar
  9. 9.
    Dawley, J.T., Clem, P.G., Siegal, M.P., Overmyer, D.L.: High Jc YBa2Cu3O7-δ films via rapid, low pO2 pyrolysis. J. Mater. Res. 13, 16 (2011)Google Scholar
  10. 10.
    Wu, W., Feng, F., Shi, K., Zhai, W., Qu, T., Huang, R., Tang, X.: A rapid process of YBa2Cu3O7−δ thin film fabrication using trifluoroacetate metal–organic deposition with polyethylene glycol additive. Supercond. Sci. Technol. 055013, 26 (2013)Google Scholar
  11. 11.
    Yoshitaka, T., Tetsuji, H., Teruo, I., Yuh, S., Yasuhiro, I., Takashi, S., Tomotaka, G., et al.: Advanced TFA-MOD process of high critical current YBCO films for coated conductors. Cryogenics. 44, 817 (2004)CrossRefGoogle Scholar
  12. 12.
    Yoshitaka, T., Hiroshi, F., Ryo, T., Junko, M., Sigenobu, A., Atsushi, K., Tetsuji, H., et al.: High critical current YBCO films using advanced TFA-MOD process. Physica C. 910, 412–414 (2004)Google Scholar
  13. 13.
    Kim, B.J., Yi, K.Y., Kim, H.J., Ahn, J.H., Kim, J.G., Hong, S.K., et al.: Optimization of processing parameters of YBCO films prepared by a dichloroacetic-metalorganic deposition method. Supercond. Sci. Technol. 428, 20 (2007)Google Scholar
  14. 14.
    Cayado, P., Mundet, B., Eloussifi, H., Vallés, F., Coll, M., Ricart, S., Gázquez, J., et al.: Epitaxial superconducting GdBa2Cu3O7−δ/Gd2O3 nanocomposite thin films from advanced low-fluorine solutions. Supercond. Sci. Technol. 30, 125010 (2017)CrossRefGoogle Scholar
  15. 15.
    Palmer, X., Pop, C., Eloussifi, H., Villarejo, B., Roura, P., Farjas, J., Ricart, S.: Solution design for low-fluorine trifluoroacetate route to YBa2Cu3O7 films. Supercond. Sci. Technol. 024002, 29 (2016)Google Scholar
  16. 16.
    Chen, Y., Wu, C., Zhao, G., You, C.: An advanced low-fluorine solution route for fabrication of high-performance YBCO superconducting films. Supercond. Sci. Technol. 062001, 25 (2012)Google Scholar
  17. 17.
    Vermeir, P., Feys, J., Schaubroeck, J., Verbeken, K., Bäcker, M., Van Driessche, I.: Controlled crystal orientation in fluorine-free superconducting YBa2Cu3O7−δ films. Mater. Chem. Phys. 133, 998–1002 (2012)CrossRefGoogle Scholar
  18. 18.
    Patta, Y.R., Wesolowski, D.E., Cima, M.J.: Aqueous polymer–nitrate solution deposition of YBCO films. Physica C. 129, 469 (2009)Google Scholar
  19. 19.
    Wang, W.T., Wang, Z., Pu, M.H., Wang, M.J., Zhang, X., Lei, M., Zhao, Y.: A Novel Partial Melting Process for YBa2Cu3O7−z Superconducting Films by Fluorine-Free Polymer-Assisted Metal Organic Deposition Approach. J. Supercond. Nov. Magn. 3249, 28 (2015)Google Scholar
  20. 20.
    Yamasaki, H., Ohki, K., Yamaguchi, I., Sohma, M., Kondo, W., Matsui, H., Kumagai, T., et al.: Strong flux pinning due to dislocations associated with stacking faults in YBa2Cu3O7−δ thin films prepared by fluorine-free metal organic deposition. Supercond. Sci. Technol. 23, 105004 (2010)CrossRefGoogle Scholar
  21. 21.
    Motoki, T., Shimoyama, J.I., Yamamoto, A., Ogino, H., Kishio, K., Honda, G., Nagaishi, T.: Dramatic effects of chlorine doping onJcand microstructure of fluorine-free MOD Y123 thin filmsa. Supercond. Sci. Technol. 27, 095017 (2014)CrossRefGoogle Scholar
  22. 22.
    Yamada, K., Kaneko, K., Yoshida, Y., Nishiyama, T., Teranishi, R., Suzuki, K., Kita, R., et al.: Influences of calcination temperature on growth and superconducting properties of GdBa2Cu3O7−δ films fabricated by fluorine-free metal organic deposition method. Micron. 44, 50 (2013)Google Scholar
  23. 23.
    Chen, Y., Yan, F., Zhao, G., Qu, G., Lei, L.: Fluorine-free sol–gel preparation of YBa2Cu3O7−x superconducting films by a direct annealing process. J. Alloys Compd. 640, 505 (2010)Google Scholar
  24. 24.
    Vermeir, P., Feys, J., Schaubroeck, J., Verbeken, K., Lommens, P., Van Driessche, I.: Influence of sintering conditions in the preparation of acetate-based fluorine-free CSD YBCO films using a direct sintering method. Mater. Res. Bull. 4376, 47 (2012)Google Scholar
  25. 25.
    Wang, W.T., Li, G., Pu, M.H., Sun, R.P., Zhou, H.M., Zhang, Y., Zhang, H., et al.: Chemical solution deposition of YBCO thin film by different polymer additives. Physica C. 1563, 468 (2008)Google Scholar
  26. 26.
    Wang, Z., Wang, W.T., Zhang, X., Lei, M., Wang, M.J., Zhao, Y.: Influence of metal cation concentration on structure and performance of SmBa2Cu3O7−z superconducting films by non-fluorine CSD method. Mater. Lett. 73, 153 (2015)Google Scholar
  27. 27.
    Bean, C.P.: Magnetization of high-field superconductors. Rev. Mod. Phys. 31, 36 (1964)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • X. Yang
    • 1
    • 2
  • W. T. Wang
    • 1
    • 2
    Email author
  • L. Liu
    • 1
    • 2
  • B. L. Huo
    • 1
    • 2
  • M. J. Wang
    • 2
  • G. S. Yang
    • 1
    • 2
  • Z. J. Tian
    • 1
    • 2
  • Y. D. Xia
    • 3
  • Y. Zhao
    • 2
    • 4
    Email author
  1. 1.Key Laboratory of Advanced Technologies of Materials (Ministry of Education of China), School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengduChina
  2. 2.Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), School of Electrical EngineeringSouthwest Jiaotong UniversityChengduChina
  3. 3.School of Physical Science and TechnologySouthwest Jiaotong UniversityChengduChina
  4. 4.College of Physics and EnergyFujian Normal UniversityFuzhouPeople’s Republic of China

Personalised recommendations