Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 11, pp 3623–3636 | Cite as

Microstructural, Magnetic, and Nanoindentation Studies of the Ball-Milled Ti80Ni20 Alloy

  • L. DekhilEmail author
  • S. Louidi
  • M. Bououdina
  • M. Fellah
Original Paper


Nanostructured Ti80Ni20 material was elaborated by mechanical alloying from pure Ti and Ni powders in a planetary ball-mill P7 under argon atmosphere at ambient temperature. Morphological, microstructural, magnetic, and nanoindentation properties were studied using scanning electron microscopy, X-ray diffraction, magnetic measurements, and nanoindentation test. The morphological observations show the predominance of the welding phenomenon during the milling process. The Rietveld refinement of the X-ray diffraction pattern reveals, after 4 h of milling, the formation of the disordered hcp-Ti (Ni) solid solution in addition to elemental hcp-Ti and fcc-Ni. On further milling (20 h), the interdiffusion between Ti and Ni atoms is evidenced by the formation of disordered hcp-Ti (Ni) and fcc-Ni (Ti) solid solutions. The saturation magnetization and coercivity values are about of 159.8 emu/g and 80.79 Oe, respectively, after 20 h of milling. Mr/Ms ratio indicates the existence of small magnetic particles which are typically single domains (Mr/Ms 0.1–0.5) and/or multidomain (Mr/Ms < 0.1). Nanohardness values of the sintered powders fluctuates between 1.53 and 5.98 GPa while those of the elastic modulus varies in the range 130.73 to 164.53 GPa.


Mechanical alloying Nanostructured Ti80Ni20 material X-ray diffraction VSM Sintering Nanoindentation 



The authors are very grateful to Zerniz Nawel from the Laboratoire de Chimie organique, Département de Chimie, Faculté des Sciences, Université Badji-Mokhtar, Annaba, Algérie, for the elaboration of the nanostructured powders; to A.M. Mercier from the Laboratoire des Fluorures, Université du Maine, Le Mans, France, for the XRD measurements; to Beldi Mounira for sintering; and to Boulakraa Mohamed from the Unité de recherches des matériaux avancés, Annaba, Algérie, for the cold compaction.

Funding information

This research work was supported by the Ministère de l’Enseignement Supérieur et de la Recherche Scientifique, Algérie.


  1. 1.
    Zhang, X., Zhang, Y.: Recent advances in research and development of porous NiTi shape memory alloys. Chin. J. Mater. Res. 21(6), 561–569 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Geng, F., Shi, P., Yang, D.Z.: Review on the development of NiTi shape memoryalloy as a biomaterial. J. Funct. Mater. 36(1), 11–14 (2005)Google Scholar
  3. 3.
    Zhao, X., Ma, L., Yao, Y., Ding, Y., Shen, X.: Ti2Ni alloy: a potential candidate for hydrogen storage in nickel/metal hydride secondary batteries. Energy Environ. Sci. 3(9), 1316–1321 (2010)CrossRefGoogle Scholar
  4. 4.
    Slotoff, N., Liu, C., Deevi, S.: Emerging applications of intermetallics. Intermetallics. 8, 1313–1320 (2000)CrossRefGoogle Scholar
  5. 5.
    K. Ebato, M. Tsuda, T. Oomori, Method of producing Ni–Ti intermetallic compounds, US Patent 5316599, 1994Google Scholar
  6. 6.
    Takasaki, A.: Mechanical alloying of the Ti-Ni system. Phys. Status Solidi. 169, 83–191 (1998)CrossRefGoogle Scholar
  7. 7.
    Mousavi, T., Karimzadeh, F., Abbasi, M.H.: Synthesis and characterization of nanocrystalline NiTi intermetallic by mechanical alloying. Mater. Sci. Eng. 487, 46–51 (2008)CrossRefGoogle Scholar
  8. 8.
    Terunuma, Y., Nagumo, M.: Structural relaxation in amorphous Ni50Ti50 alloy prepared by mechanical alloying. Mater. Trans. e JIM. 7, 842–847 (1995)CrossRefGoogle Scholar
  9. 9.
    Makifuchi, Y., Terunuma, Y., Nagumo, M.: Structural relaxation in amorphous Ni-Ti alloys prepared by mechanical alloying. Mater. Sci. Eng. 228, 312–316 (1997)CrossRefGoogle Scholar
  10. 10.
    Martins, C.B., Fernandes, B.B., Ramos, E.C.T., Silva, G., Ramos, A.S.: Syntheses of the Ni3Ti, NiTi and NiTi2 compounds by mechanical alloying. Mater. Sci. Forum. 531, 217–222 (2006)CrossRefGoogle Scholar
  11. 11.
    Jiang, X., Liu, Q., Zhang, L.: Electrochemical hydrogen storage property of NiTi alloys with different Ti content prepared by mechanical alloying. Rare Metals. 30, 63–67 (2011)CrossRefGoogle Scholar
  12. 12.
    L. Lutterotti, MAUD CPD Newletter, IUCR 24, 2000Google Scholar
  13. 13.
    Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crys. 2, 45–48 (1969)CrossRefGoogle Scholar
  14. 14.
    Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH image to ImageJ: 25 years of image analysis. Nat. Methods. 7, 671–675 (2012)CrossRefGoogle Scholar
  15. 15.
    Chudoba, T., Schwaller, R., Rabe, J.M., Breguet, J.M.: Comparison of nanoindentation results obtained with Berkovich and Cube Corner indenters. Philos. Mag. 86, 5265–5283 (1986)ADSCrossRefGoogle Scholar
  16. 16.
    Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1966)zbMATHGoogle Scholar
  17. 17.
    Nakajima, H., Koiwa, M.: Diffusion in titanium. 1ISIJ International. 31(1 991), 757–766CrossRefGoogle Scholar
  18. 18.
    Radev, D.D.: Mechanical synthesis of nanostructured titanium–nickel alloys. Adv. Powder Technol. 21, 477–482 (2010)CrossRefGoogle Scholar
  19. 19.
    Sakher, E., Loudjani, N., Benchiheub, M., Bououdina, M.: Influence of milling time on structural and microstructural parameters of Ni50Ti50 prepared by mechanical alloying using Rietveld analysis. Hindawi J. Nanomater. 2018, 1 (2018)CrossRefGoogle Scholar
  20. 20.
    Karolus, M., Panek, J.: Nanostructured Ni-Ti alloys obtained by mechanical synthesis and heat treatment. J. Alloys. Compds. 658, 709–715 (2016)CrossRefGoogle Scholar
  21. 21.
    Laves, F., Wallbaum, H.J.: Naturwissenschaften. 27–674 (1939)Google Scholar
  22. 22.
    Koskimaki, D., Marcinkowski, M.J., Sastri, A.S.: Trans. AIME. 245–1883 (1969)Google Scholar
  23. 23.
    Poole, D.M.: Hume-Rothery. J. Inst. Met. 55, 83–473 (1954)Google Scholar
  24. 24.
    Koch, C.C., Pathak, D., Yamada, K.: Mechanical alloying for structural applications, pp. 12–205. Mater, Park (1993)Google Scholar
  25. 25.
    Chen, C.W.: Amsterdam. North-Holland (1977)Google Scholar
  26. 26.
    Loudjani, N., Bensebaa, N., Dekhil, L., Alleg, S., Suñol, J.J.: Structural and magnetic properties of Co50Ni50 powder mixtures. J. Magn. Magn. Mater. 323, 3063–3070 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Bensebaa, N., Loudjani, N., Alleg, S., Dekhil, L., Suñol, J.J., Al Sae, M., Bououdina, M.: XRD analysis and magnetic properties of nanocrystalline Ni20Co80 alloys. J. Magn. Magn. Mater. 349, 51–56 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    Souilah, S., Alleg, S., Bououdina, M., Sunol, J.J., Hlil, E.K.: Magnetic and structural properties of the nanostructured Cu50Ni50 powders. J. Supercond. Nov. Magn. 30, 1927 (2017)CrossRefGoogle Scholar
  29. 29.
    de Julian Fernandeza, C., Sangregorio, C., Innocenti, C., Mattei, G., Mazzoldi, P.: Inorg. Chim. Acta. 361, 4138–4142 (2008)CrossRefGoogle Scholar
  30. 30.
    Zhao, H., Sheng, H.W., Lu, K.: Microstructure evolution and thermal properties in nanocrystalline Fe during machanical attrition. Acta Mater. 49, 365–375 (2001)CrossRefGoogle Scholar
  31. 31.
    R. Kocich, I. Szurman, M. Kursa: The Methods of Preparation of Ti-Ni-X Alloys and Their Forming, Intech Open, Chapter 2, 2013Google Scholar
  32. 32.
    Ghadadimi, M., Shokuhfar, A., Rostami, H.R., Ghaffari, M.: Effects of milling and annealing on formation and structural characterization of nanocrystalline intermetallic compounds from Ni–Ti elemental powders. Mater. Lett. 80, 181–183 (2012)CrossRefGoogle Scholar
  33. 33.
    Oliver, W.C., Pharr, G.M.: J. Mater. Research. 7, 1564–1583 (1992)ADSCrossRefGoogle Scholar
  34. 34.
    Qian, L., Li, M., Zhou, Z., Yang, H., Shi, X.: Surf. Coat. Technol. 195, 264–271 (2005)CrossRefGoogle Scholar
  35. 35.
    Fu, Y., Du, H., Zhang, S.: Deposition of TiN layer on TiNi thin films to improve surface properties. Surf. Coat. Technol. 167, 129–136 (2003)CrossRefGoogle Scholar
  36. 36.
    Pogrebnjak, A., Bratushka, S., Levintant-Zayonts, N., Malikov, L.: Influence of high-dose ion implantation of NiTi equiatomic on shape memory and pseudoelastic. J. Nano Electronic Phys. 5, 61–72 (2013)Google Scholar
  37. 37.
    Mante, F.K., Baran, G.R., Lucas, B.: Biomaterials. 20, 1051–1055 (1999)CrossRefGoogle Scholar
  38. 38.
    Britton, T.B., Liang, H., Dunne, F.P.E., Wilkinson, A.J.: Proceedings of the Royal Society, vol. 466, pp. 695–719 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Mise en forme des Matériaux Métalliques (LMF2M), Département de Métallurgie et Génie des Matériaux, Faculté des Sciences de l’IngénioratUniversité Badji—MokhtarAnnabaAlgeria
  2. 2.Département de Physique, Faculté des SciencesUniversité 20 aout 1955SkikdaAlgeria
  3. 3.Department of Physics, College of ScienceUniversity of BahrainZallaqKingdom of Bahrain
  4. 4.Mechanical Engineering DepartmentAbbes Laghrour UniversityKhenchelaAlgeria

Personalised recommendations