Advertisement

Effect of Hydrostatic Pressure on Eu3−xSrxBi2S4−ySeyF4 (x = 1 and 2 and y = 1.5 and 2) Superconductors

  • N. Subbulakshmi
  • G. Kalai Selvan
  • K. Manikandan
  • M. Kannan
  • Z. Haque
  • L. C. Gupta
  • A. K. Ganguli
  • S. ArumugamEmail author
Original Paper
  • 30 Downloads

Abstract

We have investigated the effect of pressure on Se-doped Eu2SrBi2S4F4 and EuSr2Bi2S4F4 at S sites. We report the electrical resistivity measurements under hydrostatic pressure (P) ~ 3 GPa and ~ 2.5 GPa on Eu2SrBi2S4−ySeyF4 [dTc/dP ~ 1.68 K/GPa (x = 2)] and EuSr2Bi2S4−xSexF4 [dTc/dP ~ 1.57 K/GPa (x = 1.5) and 1.74 K/GPa (x = 2)] respectively. Pressure-induced superconductivity has been observed in EuSr2Bi2S2.5Se1.5F4 with Tc of 2.42 K at 0.12 GPa and the Tc increases with further application of P up to 3 GPa (dTc/dP ~ 1.12 K/GPa) and maximum Tc of ~ 8 K is observed for EuSr2Bi2S2Se2F4. These results corroborate the behavior of this material under high pressure magnetization studies. Further, the metallic nature is observed for EuSr2Bi2S2.5Se1.5F4, EuSr2Bi2S2Se2F4, and Eu2SrBi2S2Se2F4 compositions and it is slightly suppressed with the application of pressure. Pressure effect on upper critical field Hc2(0) is estimated from magnetic field–dependent ρ(T) measurements and it is found to be higher for all compositions than parent compound. The field-dependent thermal activation energy (μ0/kB) is calculated from Arrhenius plot using ρ(T) and designates a robust flux pinning potential which might be co-existing with applied magnetic field and pressure.

Keywords

Hydrostatic pressure Superconducting transition temperature and upper critical field Electrical resistivity 

Notes

Funding Information

The author SA wishes to thank DST (SERB, PURSE, FIST), CEFIPRA, and UGC-DAE-CSR for the financial support. AKG thanks DST SERB (EMR/2016/000156) for financial assistance. K. M thanks UGC-RGNF, University Grant Commission, India, for his meritorious fellowship. Z. H and M.K. wish to thank CSIR respectively for the award of research fellowship.

AKG Visiting Scientist at SSNRL Lab, Dept. of Chemistry, IIT Delhi.

References

  1. 1.
    Mizuguchi, Y., Fujihisa, H., Gotoh, Y., Suzuki, K., Usui, H., Kuroki, K., Demura, S., Takano, Y., Izawa, H., Miura, O.: BiS2-based layered superconductor Bi4O4S3. Phys. Rev. B. 86, 220510 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Singh, S.K., Kumar, A., Gahtori, B., Shruti, Sharma, G., Patnaik, S., Awana, V.P.S.: Bulk superconductivity in bismuth oxysulfide Bi4O4S3. J. Am. Chem. Soc. 134, 16504–16507 (2012)CrossRefGoogle Scholar
  3. 3.
    Mizuguchi, Y., Demura, S., Deguchi, K., Takano, Y., Fujihisa, H., Gotoh, Y., Izawa, H., Miura, O.: Superconductivity in novel BiS2-based layered superconductor LaO1−xFxBiS2. J. Phys. Soc. Jpn. 81, 114725 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Lin, X., Ni, X., Chen, B., Xu, X., Yang, X., Dai, J., Li, Y., Yang, X., Luo, Y., Tao, Q., Cao, G., Xu, Z.: Superconductivity induced by la doping in Sr1-xLaxFBiS2. Phys. Rev. B. 87, 020504 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Jha, R., Kumar, A., Singh, S.K., Awana, V.P.S.: Superconductivity at 5 K in NdO0.5F0.5BiS2. J. Appl. Phys. 113, 056102 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Awana, V.P.S., Kumar, A., Jha, R., Kumar Singh, S., Pal, A., Shruti, Saha, J., Patnaik, S.: Appearance of superconductivity in layered LaO0.5F0.5BiS2. Solid State Commun. 157, 21–23 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Jha, R., Kumar, A., Kumar Singh, S., Awana, V.P.S.: Synthesis and superconductivity of new BiS2based superconductor PrO0.5F0.5BiS2. J. Supercond. Nov. Magn. 26, 499–502 (2013)CrossRefGoogle Scholar
  8. 8.
    Sakai, H., Kotajima, D., Saito, K., Wadati, H., Wakisaka, Y., Mizumaki, M., Nitta, K., Tokura, Y., Ishiwata, S.: Insulator-to-superconductor transition upon electron doping in a BiS2-based superconductor Sr1-xLaxBiS2. J. Phys. Soc. Jpn. 83, 1–7 (2014)CrossRefGoogle Scholar
  9. 9.
    Nagao, M., Demura, S., Deguchi, K., Miura, A., Watauchi, S., Takei, T., Takano, Y., Kumada, N., Tanaka, I.: Structural analysis and superconducting properties of F-substituted NdOBiS2 single crystals. J. Phys. Soc. Jpn. 82, 113701 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Thakur, G.S., Jha, R., Haque, Z., Awana, V.P.S., Gupta, L.C., Ganguli, A.K.: Pressure enhanced superconductivity at 10 K in la doped EuBiS2F. Supercond. Sci. Technol. 28, 115010 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Haque, Z., Thakur, G.S., Selvan, G.K., Arumugam, S., Gupta, L.C., Ganguli, A.K.: High-pressure studies of superconductivity in BiO0.75F0.25BiS2. Bull. Mater. Sci. 40, 1121–1125 (2017)CrossRefGoogle Scholar
  12. 12.
    Yazici, D., Huang, K., White, B., Jeon, I., Burnett, V., Friedman, V., Lum, I., Nalliyan, M., Spagna, S., Maple, M.: Superconductivity induced by electron doping in La1−xMxOBiS2 (M=Ti, Zr, Hf, Th). Phys. Rev. B. 87, 174512 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Zhai, H., Zhang, P., Wu, S., He, C., Tang, Z.: Anomalous Eu valence state and superconductivity in undoped Eu3Bi2S4F4. J. Am. Chem. Soc. 136, 15386–15393 (2014)CrossRefGoogle Scholar
  14. 14.
    Zhai, H.F., Tang, Z.T., Jiang, H., Xu, K., Zhang, K., Zhang, P., Bao, J.K., Sun, Y.L., Jiao, W.H., Nowik, I., Felner, I., Li, Y.K., Xu, X.F., Tao, Q., Feng, C.M., Xu, Z.A., Cao, G.H.: Possible charge-density wave, superconductivity, and f-electron valence instability in EuBiS2F. Phys. Rev. B. 90, 1–9 (2014)CrossRefGoogle Scholar
  15. 15.
    Haque, Z., Thakur, G.S., Parthasarathy, R., Gerke, B., Block, T., Heletta, L., Pöttgen, R., Joshi, A.G., Selvan, G.K., Arumugam, S., Gupta, L.C., Ganguli, A.K.: Unusual mixed valence of Eu in two materials EuSr2Bi2S4F4and Eu2SrBi2S4F4: Mössbauer and X-ray photoemission spectroscopy investigations. Inorg. Chem. 56, 3182–3189 (2017)CrossRefGoogle Scholar
  16. 16.
    Zhang, P., Zhai, H.-F., Wang, Z., Chen, J., Feng, C.-M., Cao, G.-H., Xu, Z.-A.: Effect of Sr doping in layered Eu3Bi2S4F4 superconductor. Supercond. Sci. Technol. 30, 015005 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    Zhang, P., Zhai, H.F., Tang, Z.J., Li, L., Li, Y.K., Chen, Q., Chen, J., Wang, Z., Feng, C.M., Cao, G.H., Xu, Z.A.: Superconductivity enhanced by Se doping in Eu3Bi2(S,Se)4F4. Europhys. Lett. 111, 27002 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Hiroi, T., Kajitani, J., Omachi, A., Miura, O., Mizuguchi, Y.: Evolution of superconductivity in BiS2-based superconductor LaO0.5F0.5Bi(S1-xSex)2. J. Phys. Soc. Jpn. 84, 5–8 (2015)CrossRefGoogle Scholar
  19. 19.
    Haque, Z., Thakur, G.S., Selvan, G.K., Block, T., Janka, O., Pöttgen, R., Joshi, A.G., Parthasarathy, R., Arumugam, S., Gupta, L.C., Ganguli, A.K.: Valence state of Eu and superconductivity in Se-substituted EuSr2Bi2S4F4 and Eu2SrBi2S4F4. Inorg. Chem. 57, 37–44 (2018)CrossRefGoogle Scholar
  20. 20.
    Jinno, G., Jha, R., Yamada, A., Higashinaka, R., Matsuda, T.D., Aoki, Y., Nagao, M., Miura, O., Mizuguchi, Y.: Bulk superconductivity induced by in-plane chemical pressure effect in Eu0.5La0.5FBiS2-xSex. J. Phys. Soc. Jpn. 85, 2–7 (2016)CrossRefGoogle Scholar
  21. 21.
    Krzton-Maziopa, A., Guguchia, Z., Pomjakushina, E., Pomjakushin, V., Khasanov, R., Luetkens, H., Biswas, P.K., Amato, A., Keller, H., Conder, K.: Superconductivity in a new layered bismuth oxyselenide: LaO0.5F0.5BiSe2. J. Phys. Condens. Matter. 26, 1–6 (2014)CrossRefGoogle Scholar
  22. 22.
    Jha, R., Awana, V.P.S.: Effect of Se doping in recently discovered layered Bi4O4S3 superconductor. Physica C. 498, 45–49 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Hiroi, T., Kajitani, J., Omachi, A., Miura, O., Mizuguchi, Y.: Element substitution effect on superconductivity in BiS2-based NdO1−xFxBiS2. J. Supercond. Nov. Magn. 28, 1149–1153 (2015)CrossRefGoogle Scholar
  24. 24.
    Kotegawa, H., Tomita, Y., Tou, H., Izawa, H., Mizuguchi, Y., Miura, O., Demura, S., Deguchi, K., Takano, Y.: Pressure study of BiS2-based superconductors Bi4O4S3 and La(O,F)BiS2. J. Phys. Soc. Jpn. 81, 2–5 (2012)Google Scholar
  25. 25.
    Kalai Selvan, G., Kanagaraj, M., Esakki Muthu, S., Jha, R., Awana, V.P.S., Arumugam, S.: Hydrostatic pressure effect on Tc of new BiS2-based Bi4O4S3 and NdO0.5F0.5BiS2 layered superconductors. Phys. Status Solidi - Rapid Res. Lett. 7, 510–513 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Jha, R., Tiwari, B., Awana, V.P.S.: Impact of hydrostatic pressure on superconductivity of Sr0.5La0.5FBiS2. J. Phys. Soc. Jpn. 83, 063707 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Tomita, T., Ebata, M., Soeda, H., Takahashi, H., Fujihisa, H., Gotoh, Y., Mizuguchi, Y., Izawa, H., Miura, O., Demura, S., Deguchi, K., Takano, Y.: Pressure-induced enhancement of superconductivity and structural transition in BiS2-layered LaO1-xFxBiS2. J. Phys. Soc. Jpn. 83, 2–5 (2014)Google Scholar
  28. 28.
    Okada, T., Ogino, H., Shimoyama, J., Kishio, K., Takeshita, N., Shirakawa, N., Iyo, A., Eisaki, H.: Pressure effects on superconducting properties of the BiS2-based superconductor Bi2(O,S)S2. J. Phys. Soc. Jpn. 84, 084703 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Wolowiec, C.T., Yazici, D., White, B.D., Huang, K., Maple, M.B.: Pressure-induced enhancement of superconductivity and suppression of semiconducting behavior in LnO0.5F0.5BiS2 (Ln=La,Ce) compounds. Phys. Rev. B. 88, 3–10 (2013)CrossRefGoogle Scholar
  30. 30.
    Wolowiec, C.T., White, B.D., Jeon, I., Yazici, D., Huang, K., Maple, M.B.: Enhancement of superconductivity near the pressure-induced semiconductor-metal transition in the BiS2-based superconductors LnO0.5F0.5BiS2 (Ln = La, Ce, Pr, Nd). J. Phys. Condens. Matter. 25, 422201 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Liu, J., Li, S., Li, Y., Zhu, X., Wen, H.-H.: Pressure-tuned enhancement of superconductivity and change of ground state properties in LaO0.5F0.5BiSe2 single crystals. Phys. Rev. B. 90, 094507 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Fang, Y., Yazici, D., White, B.D., Maple, M.B.: Pressure-induced phase transition in La1−xSmxO0.5F0.5BiS2. Phys. Rev. B. 92, 094507 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Guo, C.Y., Chen, Y., Smidman, M., Chen, S.A., Jiang, W.B., Zhai, H.F., Wang, Y.F., Cao, G.H., Chen, J.M., Lu, X., Yuan, H.Q.: Evidence for two distinct superconducting phases in EuBiS2F under pressure. Phys. Rev. B. 91, 8–12 (2015)Google Scholar
  34. 34.
    Luo, Y., Zhai, H.-F., Zhang, P., Xu, Z.-A., Cao, G.-H., Thompson, J.D.: Pressure-enhanced superconductivity in Eu3Bi2S4F4. Phys. Rev. B. 90, 220510 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    Kannan, M., Kalai Selvan, G., Haque, Z., Takur, S.G., Wang, B., Ishigaki, K., Uwatoko, Y., Gupta, L.C., Ganguli, A.K., Arumugam, S.: Superconductivity induced by external pressure in Eu3−xSrxBi2S4F4 (x = 1, 2) compounds. Supercond. Sci. Technol. 30, 115011 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    Mori, N., Takahashi, H., Takeshita, N.: Low-temperature and high-pressure apparatus developed at ISSP, University of Tokyo. High Press. Res. 24, 225–232 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    Honda, F., Kaji, S., Minamitake, I., Ohashi, M., Oomi, G., Eto, T., Kagayama, T.: High-pressure apparatus for the measurement of thermal and transport properties at multi-extreme conditions. J. Phys. Condens. Matter. 14, 11501–11505 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    Igawa, K., Okada, H., Takahashi, H., Matsuishi, S., Kamihara, Y., Hirano, M., Hosono, H., Matsubayashi, K., Uwatoko, Y.: Pressure-induced superconductivity in iron pnictide compound SrFe2As2. J. Phys. Soc. Jpn. 78, 5–6 (2009)Google Scholar
  39. 39.
    Deguchi, K., Mizuguchi, Y., S, D., H, H., Watanabe, T., Denholme, S., Fujioka, M., Okazaki, H., Ozaki, T., Takeya, H., Yamaguchi, T., Miura, O., Takano, Y.: Evolution of superconductivity in LaO1−xFxBiS2 prepared by high-pressure technique. Europhys. Lett. 101, 17004 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    Lei, H., Wang, K., Abeykoon, M., Bozin, E.S., Petrovic, C.: New layered fluorosulfide SrFBiS2. Inorg. Chem. 52, 10685–10689 (2013)CrossRefGoogle Scholar
  41. 41.
    Li, Y., Lin, X., Li, L., Zhou, N., Xu, X., Cao, C., Jianhui, D., Zhang, L., Luo, Y., Jiao, W., Tao, Q., Cao, G., Xu, Z.: Electronic phase diagram in a new BiS2-based Sr1−xLaxFBiS2 system. Supercond. Sci. Technol. 27, 035009 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    Kajitani, J., Deguchi, K., Omachi, A., Hiroi, T., Takano, Y., Takatsu, H., Kadowaki, H., Miura, O., Mizuguchi, Y.: Correlation between crystal structure and superconductivity in LaO0.5F0.5BiS2. Solid State Commun. 181, 1–4 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    Werthamer, N.R., Helfand, E., Hohenberg, P.C.: Temperature and purity dependence of the superconducting critical field, Hc2. III. Electron spin and spin-orbit effects. Phys. Rev. 147, 295–302 (1966)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. Subbulakshmi
    • 1
  • G. Kalai Selvan
    • 1
    • 2
  • K. Manikandan
    • 1
  • M. Kannan
    • 1
  • Z. Haque
    • 3
  • L. C. Gupta
    • 3
  • A. K. Ganguli
    • 3
  • S. Arumugam
    • 1
    Email author
  1. 1.Centre for High Pressure Research, School of PhysicsBharathidasan UniversityTiruchirappalliIndia
  2. 2.Department of PhysicsUniversity of Alabama at BirminghamBirminghamUSA
  3. 3.Department of ChemistryIndian Institute of TechnologyNew DelhiIndia

Personalised recommendations