Advertisement

Structural Analysis, Magnetocaloric Effect, and Critical Exponents for La0.6Sr0.2Na0.2MnO3 Manganite

  • Sobhi HciniEmail author
  • Raihane Charguia
  • Abdessalem Dhahri
  • Mohamed Lamjed Bouazizi
Original Paper
  • 39 Downloads

Abstract

This work focuses on the structural, magnetocaloric effect, and critical exponent investigations of La0.6Sr0.2Na0.2MnO3 manganite prepared via sol–gel method. XRD analysis confirms the rhombohedral structure with \( R\overline{3}c \) symmetry for this sample, and Rietveld method was used to estimate its different structural parameters. The sample presents FM-PM phase transition of second-order type at TC = 309 K. The maximum of magnetic entropy change (−\( \Delta {S}_M^{max} \)) and relative cooling power (RCP) reach values of about 3.57 J kg−1 K−1 and 214.46 J kg−1, respectively (at μ0H = 5 T). These values indicate that La0.6Sr0.2Na0.2MnO3 sample can be used as active magnetic refrigerator. Critical exponents (β, γ, and δ) of the sample have studied by analyzing the M(μ0H, T) isotherms using different techniques. The estimated values of these critical exponents are found to be different to those predicted for standard theoretical models.

Keywords

Manganite0073 Structural analysis Magnetocaloric effect Critical exponents 

Notes

Funding information

The authors gratefully acknowledge Qassim University, represented by the Deanship of Scientific Research, on the material support for this research under the number 5158-cosabu-2018-1-14-S during the academic year 2018

References

  1. 1.
    Pecharsky Jr., V.K., Gschneidner, K.A.: Effect of alloying on the giant magnetocaloric effect of Gd5(Si2Ge2). J. Magn. Magn. Mater. 167, L179–L184 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    Pecharsky, V.K., Gschneidner Jr, K.A.: Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4494–4497 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    Hu, F.X., Shen, B.G., Sun, J.R., Cheng, Z.H., Rao, G.H., Zhang, X.X.: Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6. Appl. Phys. Lett. 78, 3675–3677 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Hu, F.X., Shen, B.G., Sun, J.R.: Magnetic entropy change in Ni51.5Mn22.7Ga25.8 alloy. Appl. Phys. Lett. 76, 3460–3462 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Wada, H., Tanabe, Y.: Giant magnetocaloric effect of MnAs1−xSbx. Appl. Phys. Lett. 79, 3302–3304 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Hcini, S., Boudard, M., Zemni, S., Oumezzine, M.: Effect of Fe-doping on structural, magnetic and magnetocaloric properties of Nd0.67Ba0.33Mn1−xFexO3 manganites. Ceram. Int. 40, 16041–16050 (2014)CrossRefGoogle Scholar
  7. 7.
    Oumezzine, E., Hcini, S., Hlil, E.K., Dhahri, E., Oumezzine, M.: Effect of Ni-doping on structural, magnetic and magnetocaloric properties of La 0.6 Pr 0.1 Ba 0.3 Mn 1−x Ni x O 3 nanocrystalline manganites synthesized by Pechini sol–gel method. J. Alloys Compd. 615, 553–560 (2014)CrossRefGoogle Scholar
  8. 8.
    Riahi, K., Messaoui, I., Koubaa, W.C., Mercone, S., Leridon, B., Koubaa, M., Cheikhrouhou, A.: Effect of synthesis route on the structural, magnetic and magnetocaloric properties of La 0.78 Dy 0.02 Ca 0.2 MnO 3 manganite: A comparison between sol-gel, high-energy ball-milling and solid state process. J. Alloys Compd. 688, 1028–1038 (2016)CrossRefGoogle Scholar
  9. 9.
    Mahjoub, S., Baazaoui, M., Hlil, E.K., Oumezzine, M.: Effect of synthesis techniques on structural, magnetocaloric and critical behavior of Pr0.6Ca0.1Sr0.3Mn0.975Fe0.025O3 manganites. Ceram. Int. 41, 12407–12416 (2015)CrossRefGoogle Scholar
  10. 10.
    Laouyenne, M.R., Baazaoui, M., Farah, K., Hlil, E.K., Oumezzine, M.: A large magnetocaloric effect of La0.8Na0.2Mn0.97Bi0.03O3 manganite synthesized by pechini Sol-Gel method and compared to the sample synthesized by solid-state route. J. Magn. Magn. Mater. 474, 393–399 (2019)ADSCrossRefGoogle Scholar
  11. 11.
    Ben Khlifa, H., M’nassri, R., Koubaa, W.C., Hlil, E.K., Cheikhrouhou, A.: Ceram. Int. 43, 8709 (2017)CrossRefGoogle Scholar
  12. 12.
    Walha, I., Smari, M., Mnasri, T., Dhahri, E.: Structural, magnetic, and magnetocaloric properties of Ag-doped in the La 0.6 Ca 0.4 MnO 3 compound. J. Magn. Magn. Mater. 454, 190–195 (2018)CrossRefGoogle Scholar
  13. 13.
    Anis, B., Samanta, T., Banerjee, S., Das, I.: Appl. Phys. Lett. 9(2), 212502 (2008)Google Scholar
  14. 14.
    Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969)CrossRefGoogle Scholar
  15. 15.
    Gaudon, M., Robert, C.L., Ansart, F., Stevens, P., Rousset, A.: Preparation and characterization of La1–xSrxMnO3+δ (0⩽x⩽0.6) powder by sol–gel processing. Solid State Sci. 4, 125–133 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A. 32, 751–767 (1976)CrossRefGoogle Scholar
  17. 17.
    Varshney, D., Dodiya, N., Shaikh, M.W.: Structural properties and electrical resistivity of Na-substituted lanthanum manganites: La1−xNaxMnO3+y (x=0.1, 0.125 and 0.15). J. Alloys Compd. 509, 7447–7457 (2011)CrossRefGoogle Scholar
  18. 18.
    Dodiya, N., Varshney, D.: Structural properties and Raman spectroscopy of rhombohedral La1−xNaxMnO3 (0.075≤x≤0.15). J. Mol. Struct. 1031, 104–109 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Arrott, A.: Criterion for ferromagnetism from observations of magnetic isotherms. Phys. Rev. 108, 1394–1396 (1957)ADSCrossRefGoogle Scholar
  20. 20.
    Banerjee, S.K.: On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16–17 (1964)ADSCrossRefGoogle Scholar
  21. 21.
    Phan, M.H., Yu, S.C.: Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325–340 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Stanley, H.E.: Introduction to phase transitions and critical phenomena. Oxford University Press, London (1971)Google Scholar
  23. 23.
    Arrott, A., Noakes, J.E.: Approximate equation of state for nickel near its critical temperature. Phys. Rev. Lett. 19, 786–789 (1967)ADSCrossRefGoogle Scholar
  24. 24.
    Kaul, S.N.: Static critical phenomena in ferromagnets with quenched disorder. J. Magn. Magn. Mater. 53, 5–53 (1985)ADSCrossRefGoogle Scholar
  25. 25.
    K. Huang, Statistical mechanics, second ed., Wiley, New York, 1987Google Scholar
  26. 26.
    Fisher, M.E., Ma, S.K., Nickel, B.G.: Critical exponents for long-range interactions. Phys. Rev. Lett. 29, 917–920 (1972)ADSCrossRefGoogle Scholar
  27. 27.
    Kouvel, J.S., Fisher, M.E.: Phys. Rev. 136, 1626 (1964)ADSCrossRefGoogle Scholar
  28. 28.
    Widom, B.: Degree of the critical isotherm. J. Chem. Phys. 41, 1633–1634 (1964)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Dong, Q.Y., Zhang, H.W., Sun, J.R., Shen, B.G., Franco, V.: A phenomenological fitting curve for the magnetocaloric effect of materials with a second-order phase transition. J. Appl. Phys. 103, 116101 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Franco, V., Blázquez, J.S., Conde, A.: Field dependence of the magnetocaloric effect in materials with a second order phase transition: A master curve for the magnetic entropy change. Appl. Phys. Lett. 89, 222512 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Fan, J., Ling, L., Hong, B., Zhang, L., Pi, L., Zhang, Y.: Critical properties of the perovskite manganiteLa0.1Nd0.6Sr0.3MnO3. Phys. Rev. B: Condens. Matter Mater. Phys. 81, 144426 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Thanh, T.D., YiKyung, Y., Ho, T.A., Manh, T.V., Phan, T.L., Tartakovsky, D.M., Yu, S.C.: IEEE Trans. Magn. 51, 1 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sobhi Hcini
    • 1
    Email author
  • Raihane Charguia
    • 2
    • 3
  • Abdessalem Dhahri
    • 4
  • Mohamed Lamjed Bouazizi
    • 5
  1. 1.Faculty of Science and Technology of Sidi Bouzid, Research unit of valorization and optimization of exploitation of resourcesKairouan UniversitySidi BouzidTunisia
  2. 2.College of Sciences and Arts, Department of PhysicsQassim UniversityBuraydahSaudi Arabia
  3. 3.Physics Laboratory of the Condensed Matters, Faculty of Sciences, Department of PhysicsUniversity of Tunis El ManarTunisTunisia
  4. 4.Faculty of Sciences of Monastir, Department of Physics, Laboratory of Physical Chemistry of MaterialsMonastir UniversityMonastirTunisia
  5. 5.College of Engineering, Mechanical DepartmentPrince Sattam Bin Abdulaziz UniversityAl-KharjSaudi Arabia

Personalised recommendations