Effects of Co Doping and Point Defect on the Ferromagnetism of ZnO

  • Q. Y. HouEmail author
  • Y. J. Liu
Review Paper


The effects of different doping proportions of Co doping and oxygen vacancies (VO) on the ferromagnetism of zinc oxide (ZnO) are controversial. To solve this problem, we investigated the effects of Co doping and point defects (VO, VZn, Hi, and Zni) on the ferromagnetism of ZnO through first-principle calculations by using generalized gradient approximation + U (GGA + U) under density functional theory. Results show that the closer the distance between Co and vacancies (VO or VZn), the lower the formation energy and the more stable the system will be. Co-doped ZnO with VO or VZn exhibits long-range ordered ferromagnetism and Curie temperature above the room temperature. Especially, Co-doped ZnO with VZn shows a half-metallic behavior, resulting in 100% conduction hole polarizability, which is highly beneficial for dilute magnetic semiconductors (DMSs) as a hole injection source. The ferromagnetism of Zn14CoO16 is caused by the double exchange effects among the electrons of the O–2p, Co–3d, and Zn–3d orbits mediated by the hole carriers after complexes were formed by the Co doping and Zn vacancy. Similarly, the origin of ferromagnetism in Zn15CoO15 is derived from the double exchange effects among the electrons of O–2p, Co–3d, and Zn–4s states mediated by the electron carriers after complexes were formed by the Co doping and O vacancy. In addition, the result shows that Co-doped ZnO with interstitial H (Hi) or Zn (Zni) is unfavorable for ferromagnetism and should be avoided experimentally.


Co doping and point defect ZnO First-principle Ferromagnetism 


Funding Information

This work was supported by the National Natural Science Foundation of China (Grant nos. 61366008, 61664007) and the Science and Technology Major Project of Inner Mongolia Autonomous Region (2018-810).


  1. 1.
    Ohno, H.: Making nonmagnetic semiconductors ferromagnetic. Sci. 281, 951–956 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    Vijayaprasath, G., Murugan, R., Ravi, G., Mahalingam, T., Hayakawa, Y.: Characterization of dilute magnetic semiconducting transition metal doped ZnO thin films by sol–gel spin coating method. Appl. Surf. Sci. 313, 870–876 (2014)CrossRefGoogle Scholar
  3. 3.
    Azab, A.A., Ateia, E.E., Esmail, S.A.: Comparative study on the physical properties of transition metal- doped (Co, Ni, Fe, and Mn) ZnO nanoparticles. Appl. Phys. A. 124(469), (2018)Google Scholar
  4. 4.
    Khan, R.Z., Araujo, C.I.L., Khan, T., Rahman, M.U., Rehman, Z.U., Khan, A., Ullah, B., Fashu, S.: Influence of oxygen vacancies on the structural, dielectric, and magnetic properties of (Mn, Co) Co-doped ZnO nanostructures. J. Mater. Sci: Mater. El. 29, 9785–9795 (2018)Google Scholar
  5. 5.
    Franco Jr., A., Pessoni, H.V.S., Ribeiro, P.R.T., Machado, F.L.A.: Magnetic properties of Co-doped ZnO nanoparticles. J. Magn. Magn. Mater. 426, 347–350 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    Vijayaprasath, G., Murugan, R., Mahalingam, T., Ravi, G.: Comparative study of structural and magnetic properties of transition metal (Co, Ni) doped ZnO nanoparticles. J. Mater. Sci: Mater. El. 26, 7205–7213 (2015)Google Scholar
  7. 7.
    Venkatesan, M., Fitzgerald, C.B., Coey, J.M.D.: Thin films: unexpected magnetism in a dielectric oxide. Nature. 430, 630 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Xu, X., Xu, C., Dai, J., Hu, J., Li, F., Zhang, S.: Size dependence of defect-induced room temperature ferromagnetism in undoped ZnO nanoparticles. J. Phys. Chem. C. 116, 8813–8818 (2012)CrossRefGoogle Scholar
  9. 9.
    Kittelstved, K.R., Liu, W.K., Gamelin, D.R.: Electronic structure origins of polarity-dependent high-TC ferromagnetism in oxide-diluted magnetic semiconductors. Nat. Mater. 5, 291–297 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Xing, G.Z., Lu, Y.H., Tian, Y.F., Yi, J.B., Lim, C.C., Li, Y.F., Li, G.P., Wang, D.D., Yao, B., Ding, J.: Defect-induced magnetism in undoped wide band gap oxides: zinc vacancies in ZnO as an example. AIP Adv. 1, 022152 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Khalid, M., Ziese, M., Setzer, A., Esquinazi, P., Lorenz, M., Hochmuth, H., Grundmann, M., Spemann, D., Butz, T., Brauer, G.: Phys. Rev. B: Defect-induced magnetic order in pure ZnO films. Condens. Matter Mater. Phys. 035331, 80 (2009)Google Scholar
  12. 12.
    Pan, F., Song, C., Liu, X.J., Yang, Y.C., Zeng, F.: Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films. Mater.Sci. Eng. R. 62, 1–35 (2008)CrossRefGoogle Scholar
  13. 13.
    Lee, H.J., Jeong, S.Y., Cho, C.R., Park, C.H.: Study of diluted magnetic semiconductor: Co-doped ZnO. Appl. Phys.Lett. 81, 4020–4022 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Wang, D.D., Zhao, B., Qi, N., Chen, Z.Q., Kawasuso, A.: Vacancy-mediated ferromagnetism in Co-implanted ZnO studied using a slow positron beam. J. Mater. Sci. 52, 7067–7076 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Zhang, H.Y., Hao, W., Cao, Y.Q., Chang, X.F., Xu, M.X., Guo, X.L., Shen, K., Xiang, D.H., Xu, Q.Y.: Room temperature ferromagnetic Zn 0.98 Co 0.02 O powders with improved visible-light photocatalysis. RSC Adv. 6, 6761–6767 (2016)CrossRefGoogle Scholar
  16. 16.
    Zhang, H., Cao, Y.Q., Yang, Z.X., Si, L.F., Zhong, W., Wu, D., Xu, M.X., Xu, Q.Y.: Enhanced room temperature ferromagnetism in Co-doped ZnO mediated by interstitial H. Mater. Lett. 89, 209–211 (2012)CrossRefGoogle Scholar
  17. 17.
    Lina, Y.J., Wang, M.S., Liub, C.J., Huang, H.J.: Defects, stress and abnormal shift of the (002) diffraction peak for Li-doped ZnO films. Appl. Surf. Sci. 256, 7623–7627 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Liu, S.Y., Li, G.J., Jia, B.H., Tian, R.X., Wang, Q.: Effect of high magnetic field on magnetic properties of oxidized ZnO:Co film prepared with different growth models. AIP Adv. 7, 115122 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Valério, L.R., Mamani, N.C., Zevallos, A.O., Mesquita, A., Bernardi, M.I.B., Doriguetto, A.C., Carvalho, H.B.: Preparation and structural-optical characterization of dip-coated nanostructured Co-doped ZnO dilute magnetic oxide thin films. RSC Adv. 7, 20611–20619 (2017)CrossRefGoogle Scholar
  20. 20.
    Ma, X.G., Wu, Y., Lv, Y.H., Zhu, Y.F.: Correlation effects on lattice relaxation and electronic structure of ZnO within the GGA+U formalism. J. Phys.Chem.C. 117, 26029–26039 (2013)CrossRefGoogle Scholar
  21. 21.
    Shi, L.B., Qi, G.Q., Fei, Y.: Defect formation and magnetic properties of Co-doped ZnO nanowires. Nano. 8, 1350021 (2013)CrossRefGoogle Scholar
  22. 22.
    Wang, S., Li, P., Liu, H., Li, J.B., Wei, Y.: The structure and optical properties of ZnO nanocrystals dependence on Co-doping levels. J. Alloy. Compd. 505, 362–366 (2010)CrossRefGoogle Scholar
  23. 23.
    Sarsari, I.A., Salamati, H., Kameli, P., Razavi, F.S.: Optical, structural, and magnetic properties of ZnO:Co nanoparticles prepared by a thermal treatment of ball milled precursors. J. Supercond. Nov. Magn. 24, 2293–2298 (2011)CrossRefGoogle Scholar
  24. 24.
    Patterson, C.H.: Role of defects in ferromagnetism in Zn1-xCoxO: a hybrid density-functional study. Phys. Rev. B. 74(144432), (2006)Google Scholar
  25. 25.
    Wardle, M.G., Goss, J.P., Briddon, P.R.: Theory of Li in ZnO: a limitation for Li-based p-type doping. Phys. Rev. B. 71(155205), (2005)Google Scholar
  26. 26.
    Na, P.S., Smith, M.F., Kim, K., Du, M.H., Wei, S.H., Zhang, S.B., Limpijumnong, S.: First-principles study of native defects in anatase TiO2. Phys. Rev. B. 73(125205), (2006)Google Scholar
  27. 27.
    Pickett, W.E., Moodera, J.S.: Half metallic magnets. Phys. Today. 54, 39–44 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    Assadi, M.H.N., Zhang, Y.B., Li, S.: The role of unintentional hydrogen on magnetic properties of Co doped ZnO. AIP. Conf. Proc. 1399, 693–694 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Schwartz, D.A., Gamelin, D.R.: Reversible 300 K ferromagnetic ordering in a diluted magnetic semiconductor. ADV. Mater.A. 16, 2115–2119 (2004)CrossRefGoogle Scholar
  30. 30.
    Lardjane, S., Merad, G., Fenineche, N., Billard, A., Faraoun, H.I.: Ab initio study of ZnCoO diluted magnetic semiconductor and its magnetic properties. J. Alloy. Compd. 551, 306–311 (2013)CrossRefGoogle Scholar
  31. 31.
    Fan, J.C., Sreekanth, K.M., Xie, Z., Chang, S.L., Rao, K.V.: P-type ZnO materials: theory, growth, properties and devices. Prog. Mater. Sci. 58, 874–985 (2013)CrossRefGoogle Scholar
  32. 32.
    Pan, Q.T., Huang, K., Ni, S.B., Yang, F., Lin, S.M., He, D.Y.: Photoluminescence and magnetism in Co-doped ZnO powder. J. Phys. D. Appl. Phys. 40, 6829–6833 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Sato, K., Dederichs, P.H., Katayama, Y.H.: Curie temperatures of III–V diluted magnetic semiconductors calculated from first principles. Europhys. Lett. 61, 403–408 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    Devi, A.A.S., Roqan, I.S.: The origin of room temperature ferromagnetism mediated by Co–VZn complexes in the ZnO grain boundary. RSC Adv. 6, 50818–50824 (2016)CrossRefGoogle Scholar
  35. 35.
    Simimol, A., Anappara, A.A., Weber, S.G., Chowdhury, P., Barshilia, H.C.: Enhanced room temperature ferromagnetism in electrodeposited Co-doped ZnO nanostructured thin films by controlling the oxygen vacancy defects. J. Appl. Phys. 117, 214310 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of ScienceInner Mongolia University of TechnologyHohhotPeople’s Republic of China
  2. 2.Inner Mongolia Key Laboratory of Thin Film and CoatingsHohhotPeople’s Republic of China

Personalised recommendations