Modified Magnetic and Electrical Properties of Perovskite-Spinel Multiferroic Composites

  • Jarnail S. BangruwaEmail author
  • Sumit Kumar
  • Arti Chauhan
  • Parveen Kumar
  • Vivek Verma
Original Paper


Multiferroic composite samples (1 − x) Bi0.9Pr0.1FeO3xNi0.5Co0.5Fe2O4 for x = 0, 0.1, 0.2, 0.3, and 1.0 were synthesized by sol-gel auto-combustion method. Detailed investigations were made on the structural, magnetic, and electrical properties of these composites. The X-ray diffraction (XRD) patterns confirm the co-existence of perovskite BPFO and spinel ferrite NCFO without any impurity phase. The average particle size of BPFO and NCFO nanoparticles is nearly equal to 110 nm and 35 nm respectively which are confirmed by XRD and transmission electron microscopy (TEM) analysis. Structural and surface morphology are studied by scanning electron microscopy (SEM). The dielectric properties of the composites are also studied at room temperature. The saturation and remnant magnetization are found to increase with increase in NCFO weight percentage in the composites. The saturation magnetization (Ms) values are 3.38 emu/g, 8.65 emu/g, and 13.87 emu/g and coercivity (Hc) values are 936.52 Oe, 1058.12 Oe, and 1046.77 Oe for BPFO-NCFO 1, 2, and 3 composite samples respectively. The incorporation of BPFO and NCFO enhances the multiferroic properties in the present composite materials which are quite promising for applications point of view.


Multiferroics Composites Magnetic Ferroelectric Dielectric 



The authors are grateful to the Head, Department of Physics and Astrophysics and Director USIC Universityof Delhi. The authors are grateful to the Principal, Hindu College and Director, National Physical Laboratory (CSIR), Delhi for the constant encouragement and measurement facilities. One of the authors Jarnail S. Bangruwa is grateful to UGC for providing Non-NET JRF fellowship to carry out this work.


  1. 1.
    Eerenstein, W., Mathur, N.D., Scott, J.F.: Nature. 442, 759–765 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., Ramesh, R.: Science. 299, 1719–1722 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Spaldin, N.A., Cheong, S.W., Ramesh, R.: Phys. Today. 63, 38–43 (2010)CrossRefGoogle Scholar
  4. 4.
    Kumar, M.M., Palkar, V.R., Srinivas, K., Suryanarayana, S.V.: Appl. Phys. Lett. 76, 2764–2766 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Vopson, M.M.: Critical reviews in solid state and mat. Sc. 40, 223 (2015)Google Scholar
  6. 6.
    Kundys, B., Meny, C., Gibbs, M.R.J., Da Costa, V., Viret, M., Acosta, M., Colson, D., Doudin, B.: Appl. Phys. Lett. 100, 262411 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Park, T.-J., Papaefthymiou, G.C., Viescas, A.J., Moodenbaugh, A.R., Wong, S.S.: Nano Lett. 7(3), 766–772 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Reema Gupta, Monika Tomar, Ashok Kumar, Vinay Gupta, Smart Mater. Struct. 26 (2017) 035002Google Scholar
  9. 9.
    Panwar, N., Coondoo, I., Tomar, A., Kholkin, A.L., Puli, V.S., Katiyar, R.S.: Mater. Res. Bull. 47, 4240 (2012)CrossRefGoogle Scholar
  10. 10.
    Sati, P.C., Arora, M., Chauhan, S., Kumar, M., Chhoker, S.: Ceram. Int. 40, 7805 (2014)CrossRefGoogle Scholar
  11. 11.
    Yan, H.R., Deng, H.M., Ding, N.F., He, J., Peng, L., Sun, L.: Mater.Lett. 111, 123–125 (2013)CrossRefGoogle Scholar
  12. 12.
    H. Naganuma, J. Miura, S. Okamura, Appl. Phys. Lett. 93 (2008), 052901Google Scholar
  13. 13.
    Manjusha, K.L.Y.: Adv. Mater. Lett. 6, 853(10), (2015)Google Scholar
  14. 14.
    Beniwal, A., Bangruwa, J.S., Walia, R., Verma, V.: Ceram. Int. 42, 10373–10379 (2016)CrossRefGoogle Scholar
  15. 15.
    Bangruwa, J.S., Vashisth, B.K., Singh, N., Singh, N., Verma, V.: J. Alloy. Com. 739, 319 (2018)CrossRefGoogle Scholar
  16. 16.
    Singh, H., Yadav, K.L.: J. Alloys Com. 585, 805 (2014)CrossRefGoogle Scholar
  17. 17.
    Kaur, I., Verma, N.K.: Mater. Sci. Semicon. Proc. 33, 32 (2015)CrossRefGoogle Scholar
  18. 18.
    Dhana Lakshmi, B., Caltun, O.F., Dumitru, I., Pratap, K., Parvatheeswara Rao, B., Subba Rao, P.S.V.: Mater. Today. 2, 3806–3812 (2015)CrossRefGoogle Scholar
  19. 19.
    Abdullah Dar, M., Verma, V., Gairola, S.P., Siddiqui, W.A., Kotnala, R.K.: Appl. Sur. Sci. 258, 5342 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Amarendra, K., Singh, T.C., Goel, R.G., Mendiratta, O.P.: Thakur and Chandra Prakash. J. Appl. Phys. 92, 3872, (2002)Google Scholar
  21. 21.
    Verma, V., Beniwal, A., Ohlan, A., Tripathi, R.: J. Magn. Magn. Mater. 394, 385–390 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    B. D. Cullity, Elements of X-Ray Difffraction, Addision-Wesley Pub. Con. Inc, 1978Google Scholar
  23. 23.
    Pradhan, D.K., Chowdhury, R.N.P., Nath, T.K.: Appl. Nanosci. 2, 261–273 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Wang, Y., Hu, J., Lin, Y., Nan, C.-W.: NPGAsia Materials. 2, 61 (2010)Google Scholar
  25. 25.
    You, S., Liu, C., Liu, H., Yu, X., Li, S., Liu, W., Guo, S., Zhao, X.: Mater. Lett. 130, 157 (2014)CrossRefGoogle Scholar
  26. 26.
    Lather, S., Gupta, A., Dalal, J., Verma, V., Tripathi, R., Ohlan, A.: Ceram. Int. 43, 3246–3251 (2017)CrossRefGoogle Scholar
  27. 27.
    Dhanalakshmi, B., Pratap, K., Parvatheeswara Rao, B., Subba Rao, P.S.V.: J. Magn. Magn. Mater. 404, 119–125 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Mazumdar, S.C., Khan, M.N.I., Fakhrul Islam, M., Akther Hossain, A.K.M.: J. Magn. Magn. Mater. 401, 443–454 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Pham, C.D., Chang, J., Zurbuchen, M.A., Chang, J.P.: Chem. Mater. 27(21), 7282 (2015)CrossRefGoogle Scholar
  30. 30.
    Reddy, A.V., Sekhar, K.C., Dabra, N., Nautiyal, A., Hundal, J.S., Pathak, N.P., Nath, R.: ISRN Mater, Sci. 2011, 142968 (2011)CrossRefGoogle Scholar
  31. 31.
    Basu, S., Pal, M., Chakravorty, D.: J. Magn. Magn. Mater. 320, 3361–3365 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Palkar, V.R., Kundaliya, D.C., Malik, S.K., Bhattacharya, S.: Phy. Rev. B. 69, 212102 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    Babu, S.N., Hsu, J.H., Chen, Y.S., Lin, J.G.: J. Appl. Phys. 109, 07D904 (2011)CrossRefGoogle Scholar
  34. 34.
    Gaikwad, V.M., Acharya, S.A.: RSC Adv. 5, 14366–14373 (2015)CrossRefGoogle Scholar
  35. 35.
    Pahuja, P., Sharma, R., Prakash, C., Tandon, R.P.: Ceram. Int. 39, 9435–9445 (2013)CrossRefGoogle Scholar
  36. 36.
    Sharma, H.B., Nomita Devi, K., Gupta, V., Lee, J.H., Bobby Singh, S.: J. Alloy. Comp. 599, 32–39 (2014)CrossRefGoogle Scholar
  37. 37.
    Sharma, P., Verma, V.: J. Magn. Magn.Mater. 374, 18 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    Adhlakha, N., Yadav, K.L.: J. Mater. Sci. 49, 4423 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    Chaneliere, C., Autran, J.L., Devine, R.A.B., Balland, B.: Mater. Sci. Eng. R. 22, 269 (1996)CrossRefGoogle Scholar
  40. 40.
    Vashisth, B.K., Bangruwa, J.S., AnuBeniwal, S.P.G., Kumar, A., Singh, N., Verma, V.: J. Alloy. Com. 698, 699 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jarnail S. Bangruwa
    • 1
    • 2
    Email author
  • Sumit Kumar
    • 1
    • 2
  • Arti Chauhan
    • 1
    • 2
  • Parveen Kumar
    • 1
    • 2
  • Vivek Verma
    • 2
  1. 1.Department of Physics and AstrophysicsUniversity of DelhiDelhiIndia
  2. 2.Department of Physics, Hindu CollegeUniversity of DelhiDelhiIndia

Personalised recommendations