Effect Laws of Different Factors on Levitation Characteristics of High-Tc Superconducting Maglev System with Numerical Solutions

  • Huan Huang
  • Jun ZhengEmail author
  • Hengpei Liao
  • Ye Hong
  • Haitao Li
  • Zigang Deng
Original Paper


The interaction between the high-temperature superconducting (HTS) bulk and permanent magnet guideway (PMG) has been a topic among the existing HTS magnetic levitation systems. Up to now, the theories about the electromagnetic and force characteristics have been relatively consummated. Here, using the finite element model by COMSOL Multiphysics 5.3a, we investigated the impact of the intrinsic and external factors on the levitation characteristics of HTS maglev systems, the application laws are concluded. Factors including the critical current density and geometric dimensions of the bulk superconductor, as well as the moving velocity, are discussed. The effects of the multiple back and forth movements are also analyzed. By comparing calculation results of the distributions of the induced current and the levitation force of the bulk superconductor, we can clearly confirm the effect laws of various factors on the electromagnetic characteristics and levitation force. These observations support the physical parameters that are difficult to be tested by experiments. And they also have a significant contribution to the experimental condition selections and optimization of the high-temperature superconducting magnetic levitation.


High-temperature superconductor Maglev system Electromagnetic analysis Levitation force Induced current density 


Funding Information

This work was partially supported by the Science and Technology Partnership Program, Ministry of Science and Technology of China, the National Natural Science Foundation of China (51875485), the Sichuan Youth Science and Technology Fund (2016JQ0039), the Fundamental Research Funds for the Central Universities (2682018ZT22 and 2682018CX72), and the State Key Laboratory of Traction Power at Southwest Jiaotong University (2018TPL_T06).


  1. 1.
    Brandt, E.H.: Levitation in physics. Science. 243, 349–355 (1989)ADSCrossRefGoogle Scholar
  2. 2.
    Schultz, L., deHaas, O., Verges, P., Beyer, C., Rohlig, S., Olsen, H., Kuhn, L., Berger, D., Noteboom, U., Funk, U.: Superconductively levitated transport system−the SupraTrans project. IEEE Trans. Appl. Supercond. 15, 2301–2305 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Wang, J.S., et al.: The first man-loading high temperature superconducting maglev test vehicle in the world. Physica C. 378–381, 809–814 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Deng, Z., et al.: A high-temperature superconducting maglev ring test line developed in Chengdu, China. IEEE Trans. Appl. Supercond. 26, 3602408 (2016)CrossRefGoogle Scholar
  5. 5.
    Deng, Z., et al.: A high-temperature superconducting maglev–evacuated tube transport (HTS maglev–ETT) test system. IEEE Trans. Appl. Supercond. 27(6), 3602008 (2017)CrossRefGoogle Scholar
  6. 6.
    Stephan, R.M., de Andrade, R., Ferreira, A.C.: Superconducting light rail vehicle: a transportation solution for highly populated cities. IEEE Veh. Technol. Mag. 7(4), 122–127 (2012)CrossRefGoogle Scholar
  7. 7.
    Yang, W., Qiu, M., Liu, Y., Wen, Z., Duan, Y., Chen, X.: Levitation characteristics in an HTS maglev launch assist test vehicle. Supercond. Sci. Technol. 20(3), 281–286 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Werfel, F.N., Floegel-Delor, U., Rothfeld, R., Riedel, T., Goebel, B., Wippich, D., Schirrmeister, P.: Superconductor bearings, flywheels and transportation. Supercond. Sci. Technol. 25, 014007 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Deng, Z., Li, J., Zhang, W., Gou, Y., Ren, Y., Zheng, J.: High-temperature superconducting magnetic levitation vehicles: dynamic characteristics while running on a ring test line. IEEE Veh. Technol. Mag. 12(3), 95–102 (2017)CrossRefGoogle Scholar
  10. 10.
    Okano, M., Iwamoto, T., Furuse, M., Fuchino, S., Ishii, I.: Running performance of a pinning-type superconducting magnetic levitation guide. J. Phys. Conf. Ser. 43, 999–1002 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Gou, Y., He, D., Zheng, J., Ye, C., Xu, Y., Sun, R., Che, T., Deng, Z.: Influence of off-centre operation on the performance of HTS maglev. J. Low Temp. Phys. 174(5–6), 292–300 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Yang, W., et al.: Construction and performance of HTS maglev launch assist test vehicle. IEEE Trans. Appl. Supercond. 16(2), 1108–1111 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Sotelo, G.G., de Oliveira, R.A.H., Costa, F.S., Dias, D.H.N., de Andrade, R., Stephan, R.M.: A full scale superconducting magnetic levitation (maglev) vehicle operational line. IEEE Trans. Appl. Supercond. 25, 3601005 (2015)CrossRefGoogle Scholar
  14. 14.
    Ren, Z., Wang, J., Wang, S., Jiang, H., Zhu, M., Wang, X., Song, H.: Influence of shape and thickness on the levitation force of YBaCuO bulk HTS over a NdFeB guideway. Physica C. 384(1–2), 159–162 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    Liao, H., et al.: Dynamic levitation performance of Gd–Ba–Cu–O and Y–Ba–Cu–O bulk superconductors under a varying external magnetic field. Supercond. Sci. Technol. 31, 035010 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    Zhou, J., Zhang, X.Y., Zhou, Y.H.: Influences of cooling height and lateral moving speed on the levitation characteristics of YBaCuO bulks. Physica C. 469(5–6), 207–210 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Navau, C., Del-Valle, N., Sanchez, A.: Macroscopic modeling of magnetization and levitation of hard type-II superconductors: the critical-state model. IEEE Trans. Appl. Supercond. 23(1), 8201023 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Zhang, M., Coombs, T.A.: 3D modeling of high-T-c superconductors by finite element software. Supercond. Sci. Technol. 25, 015009 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Sass, F., Sotelo, G.G., Junior, R.A., Sirois, F.: H-formulation for simulating levitation forces acting on HTS bulks and stacks of 2G coated conductors. Supercond. Sci. Technol. 28, 125012 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Hong, Z., Campbell, A.M., Coombs, T.A.: Numerical solution of critical state in superconductivity by finite element software. Supercond. Sci. Technol. 19, 1246–1252 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Quéval, L., Liu, K., Yang, W., Zermeño, V.M.R., Ma, G.: Superconducting magnetic bearings simulation using an H-formulation finite element model. Supercond. Sci. Technol. 31(8), 084001 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    Zheng, J., Huang, H., Zhang, S., Deng, Z.: A general method to simulate the electromagnetic characteristics of HTS maglev systems by finite element software. IEEE Trans. Appl. Supercond. 28(5), 3600808 (2018)CrossRefGoogle Scholar
  23. 23.
    Ainslie, M.D., Fujishiro, H.: Modelling of bulk superconductor magnetization. Supercond. Sci. Technol. 28, 053002 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Lu, Y., Qin, Y.: Influence of critical current density on magnetic force of HTSC bulk above PMR with 3D-modeling numerical solutions. Int. J. Mod. Phys. B. 29(25–26), 1542038 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Luo, Y., Takagi, T., Miya, K.: Reduction of levitation decay in high T c superconducting magnetic bearings. Cryogenics. 39, 331–338 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    Postrekhin, E., Ma, K., Ye, H., et al.: Dynamics and relaxation of magnetic stress between magnet and superconductor in a levitation system. IEEE Trans. Appl. Supercond. 11(1), 1984–1987 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    Qin, Y., Lu, Y., Wang, S., Wang, J.: Levitation force relaxation of HTS bulk above NdFeB guideways at different approaching speeds. J. Supercond. Nov. Magn. 22(5), 511–516 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Applied Superconductivity Laboratory, State Key Laboratory of Traction PowerSouthwest Jiaotong UniversityChengduPeople’s Republic of China

Personalised recommendations