Hysteresis Cycle and Magnetization Behaviors of a Mixed-Spin (7/2, 3/2) Ferrimagnetic Ising Model: Monte Carlo Investigation

  • H. BoudaEmail author
  • T. Bahlagui
  • L. Bahmad
  • R. Masrour
  • A. El Kenz
  • A. Benyoussef
Original Paper


The effects of single-ion anisotropies and an external magnetic field on the magnetization of the mixed-spin (7/2, 3/2) ferrimagnetic Ising system are investigated within Monte Carlo simulation. Under certain values of the physical parameters, multiple hysteresis loop behaviors such as double, triple, and quintuple hysteresis cycles have been observed. Particularly, the superparamagnetic phase has been shown. The ground-state phase diagrams are presented.


Spin 7/2 Monte Carlo simulation Superparamagnetism Magnetic field Single-ion anisotropy Hysteresis loop 


  1. 1.
    Iwamura, H., Miller, J.: Design and Demonstration of Ferromagnetic Exchange Interactions in Organic Molecules. Mol. Cryst. Liq. Cryst. 232, 233–250 (1993)CrossRefGoogle Scholar
  2. 2.
    Kahn, O., Martinez, C.: Spin-Transition Polymers: From Molecular Materials Toward Memory Devices. Science. 279(44), 44–48 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    Leite, V., Godoy, M., Figueiredo, W.: Finite-size effects and compensation temperature of a ferrimagnetic small particle. Phys. Rev. B. 71, 094427 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Svendsen, H., Overgaard, J., Chevallier, M.A., Collet, E., Chen, Y.S., Jensen, F., Iversen, B.B.: Photomagnetic Switching of Heterometallic Complexes [M(dmf)4(H2O)3(μ-CN)Fe(CN)5]⋅H2O (M=Nd, La, Gd, Y) Analyzed by Single-Crystal X-ray Diffraction and Ab Initio Theory. Chem. Eur. J. 16, 7215–7223 (2010)CrossRefGoogle Scholar
  5. 5.
    Zhang, Y., Duan, G., Sato, O., Gao, S.: Structures and magnetism of cyano-bridged grid-like two-dimensional 4f–3d arrays. J. Mater. Chem. 16, 2625–2634 (2006)CrossRefGoogle Scholar
  6. 6.
    Kodama, R.: Magnetic nanoparticles. J. Magn. Magn. Mater. 200, 359–372 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Gupta, A., Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 26, 3995–4021 (2005)CrossRefGoogle Scholar
  8. 8.
    Gale, E.M.: Peter Caravan. ACS Chem. Neurosci. 9(3), 395–397 (2018)CrossRefGoogle Scholar
  9. 9.
    Kaneyoshi, T.: J. Supercond. Nov. Magn. 31(7), 2149–2155 (2018). CrossRefGoogle Scholar
  10. 10.
    Kantar, E., Keskin, M.: Thermal and magnetic properties of ternary mixed Ising nanoparticles with core–shell structure: Effective-field theory approach. J. Magn. Magn. Mater. 349, 165–172 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Keskin, M., Kantar, E., Canko, O.: Kinetics of a mixed spin-1 and spin-3/2 Ising system under a time-dependent oscillating magnetic field. Phys. Rev. E. 77(5), 051130 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Wang, W., Bi, J., Liu, R., Chen, X., Liu, J.: Superlattice. Microst. 98, 433 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Wang, W., Liu, R., Lv, D., Luo, X.: Monte Carlo simulation of magnetic properties of a nano-graphene bilayer in a longitudinal magnetic field. Superlattice. Microst. 98, 458–472 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    De La Espriella, N., Buendía, G.M.: Magnetic behavior of a mixed Ising 3/2 and 5/2 spin model. J. Phys. Condens. Matter. 23(17), 176003 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Karimou, M., Yessoufou, R., Hontinfinde, F.: Inter. J. Mod. Phys. B. 29(28), (2015)Google Scholar
  16. 16.
    Mohamad, H.K.: Int. J. Adv. Res. 2, 442 (2014)Google Scholar
  17. 17.
    Masrour, R., Jabar, A., Bahmad, L., Hamedoun, M., Benyoussef, A.: Magnetic properties of mixed integer and half-integer spins in a Blume–Capel model: A Monte Carlo study. J. Magn. Magn. Mater. 421, 76–81 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Bahlagui, T., Bouda, H., El Kenz, A., Bahmad, L., Benyoussef, A.: Monte Carlo simulation of compensation behavior for a mixed spin-5/2 and spin-7/2 Ising system with crystal field interaction. Superlattice. Microst. 110, 90–97 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Bouda, H., Bahmad, L., Masrour, R., Benyoussef, A.: Compensation behavior in a ferrimagnetic mixed spin-7/2 and spin-3: Monte Carlo Simulation. J. Supercond. Nov. Magn. (2018).
  20. 20.
    Néel, L.: Ann. Phys. 3, 137 (1948)CrossRefGoogle Scholar
  21. 21.
    Lv, D., Wang, F., Liu, R., Xue, Q., Li, S.: Monte Carlo study of magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1, 3/2) Ising nanowire with hexagonal core-shell structure. J. Alloys Compd. 701, 935–949 (2017)CrossRefGoogle Scholar
  22. 22.
    Bobák, A., Jaščur, M.: Ferrimagnetism in diluted mixed Ising spin systems. Phys. Rev. B. 51, 11533–11537 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    Keskin, M., Ertaş, M.: Mixed-spin Ising model in an oscillating magnetic field and compensation temperature. J. Stat. Phys. 139, 333–344 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Kantar, E., Deviren, B., Keskin, M.: Magnetic properties of mixed Ising nanoparticles with core-shell structure. Eur. Phys. J. B. 86, 253 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Ertaş, M., Deviren, B., Keskin, M.: Nonequilibrium magnetic properties in a two-dimensional kinetic mixed Ising system within the effective-field theory and Glauber-type stochastic dynamics approach. Phys. Rev. E. 86(5), 051110 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Wang, W., Lv, D., Zhang, F., Bi, J.L., Chen, J.N.: Monte Carlo simulation of magnetic properties of a mixed spin-2 and spin-5/2 ferrimagnetic Ising system in a longitudinal magnetic field. J. Magn. Magn. Mater. 385, 16–26 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Wang, W., Jiang, W., Lv, D.: Phys. Status Solidi (b). 249(1), 190–197 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Kocakaplan, Y., Kantar, E., Keskin, M.: Hysteresis loops and compensation behavior of cylindrical transverse spin-1 Ising nanowire with the crystal field within effective-field theory based on a probability distribution technique. Eur. Phys. J. B. 86, 420 (2013)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Wang, W., Liu, Y., Gao, Z.Y., Zhao, X.R., Yang, Y., Yang, S.: Physica E: Low–dimensional Systems and Nanostructures. 110–124, 101 (2018)Google Scholar
  30. 30.
    El Hamri, M., Bouhou, S., Essaoudi, I., Ainane, A., Ahuja, R., Dujardin, F.: Hysteresis loop behaviors of a decorated double-walled cubic nanotube. Phys. B. 524, 137–143 (2017)Google Scholar
  31. 31.
    Zaim, N., Zaim, A., Kerouad, M.: The hysteresis and magnetic properties of a nanoparticle with disordered interface. J. Clust. Sci. 29(4), 697–708 (2018)CrossRefGoogle Scholar
  32. 32.
    Zaim, A., Kerouad, M., Boughrara, M.: Monte Carlo study of the magnetic behavior of a mixed spin (1, 3/2) ferrimagnetic nanoparticle. Solid State Commun. 158, 76–81 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Arejdal, M., Kadiri, M., Abbassi, A., Slassi, A., Raiss, A.A., Bahmad, L., Benyoussef, A.: Magnetic properties of the double perovskite Ba2CoUO6: ab initio method, mean field approximation, and Monte Carlo study. J. Supercond. Nov. Magn. 29, 2659–2667 (2016)CrossRefGoogle Scholar
  34. 34.
    Wang, W., Li, Q., Lv, D., Liu, R., Peng, Z., Yang, S.: Monte Carlo study of magnetization plateaus in a zigzag graphene nanoribbon structure. Carbon. 120, 313–325 (2017)CrossRefGoogle Scholar
  35. 35.
    Mendes, R.G.B., Barreto, F.S., Santos, J.P.: Magnetic properties of the mixed spin 1/2 and spin 1 hexagonal nanotube system: Monte Carlo simulation study. J. Magn. Magn. Mater. 471, 365–369 (2019)ADSCrossRefGoogle Scholar
  36. 36.
    Kaneyoshi, T., Nakamura, Y., Shin, S.: A diluted mixed spin-2 and spin-5/2 ferrimagnetic Ising system; a study of a molecular-based magnet. J. Phys. Condens. Matter. 10(31), 7025–7035 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    Jiang, W., Lo, V., Bai, B., Yang, J.: Magnetic hysteresis loops in molecular-based magnetic materials AFeIIFeIII(C2O4)3. Phys. A. 389, 2227–2233 (2010)CrossRefGoogle Scholar
  38. 38.
    Kaneyoshi, T., Jaščur, M., Tomczak, P.: The ferrimagnetic mixed spin-1/2and spin-3/2Ising system. J. Phys. Condens. Matter. 4, L653–L658 (1992)ADSCrossRefGoogle Scholar
  39. 39.
    Honmura, R., Kaneyoshi, T.: Contribution to the new type of effective-field theory of the Ising model. J. Phys. C Solid State Phys. 12(19), 3979–3992 (1979)ADSCrossRefGoogle Scholar
  40. 40.
    Godoy, M., Leite, V.S., Figueiredo, W.: Phys. Rev. B. 69(5), 054428 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    Mohamad, H.K., Domashevskaya, E.P., Klinskikh, A.F.: Spin compensation temperatures in the mean-field approximation of a mixed spin-2 and spin-5/2 Ising ferrimagnetic system. Physica A: Statistical Mechanics and its Applications. 388(22), 4713–4718 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    Hachem, N., Lafhal, A., Zahir, H., El Bouziani, M. Madani, and A. Alrajhi M.: The spin-2 Blume-Capel model by position space renormalization group. Superlattice. Microst. 111, 927–937 (2017)Google Scholar
  43. 43.
    Antari, A.E., Zahir, H., Hasnaoui, A., Hachem, N., Alrajhi, A., Madani, M., Bouziani, M.E.: Int. J. Theor. Phys. 1–13 (2018)Google Scholar
  44. 44.
    Benayad, N., Klümper, A., Zittartz, J., Benyoussef, A.: Two-dimensional mixed spin Ising models with bond dilution and random ±J interactions. Zeitschrift für Physik B Condensed Matter. 77(2), 339–341 (1989)ADSCrossRefGoogle Scholar
  45. 45.
    Oitmaa, J., Enting, I.: J. Phys. Condens. Matter. 18, 10931 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    Karimou, M., Yessoufou, R.A., Oke, T.D., Kpadonou, A., Hontinfinde, F.: Condens. Matter Phys. 19, 33003 (2016)Google Scholar
  47. 47.
    Jabar, A., Masrour, R., Benyoussef, A., Hamedoun, M.: Monte Carlo study of alternate mixed spin-5/2 and spin-2 Ising ferrimagnetic system on the Bethe lattice. J. Magn. Magn. Mater. 397, 287–294 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    Nakamura, Y., Tucker, J.W.: Monte Carlo study of a mixed spin-1 and spin-3/2 Ising ferromagnet. IEEE Trans. Magn. 38, 2406–2408 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    Figuerola, A., Diaz, C., El Fallah, M.S., Ribas, J., Maestro, M., & Mahía, J.: Structure and magnetism of the first cyano-bridged hetero-one-dimensional GdIII–CrIII complexes Chem. Commun. 13, 1204 (2001)Google Scholar
  50. 50.
    Verdaguer, M.: Molecular electronics emerges from molecular magnetism. Science. 272(5262), 698–699 (1996)ADSCrossRefGoogle Scholar
  51. 51.
    Coronado, E., Delhaès, P., Gatteschi, D., Miller, J.S. (eds.): Molecular magnetism: from molecular assemblies to the devices, vol. 321. Springer Science & Business Media, Berlin (2013)Google Scholar
  52. 52.
    Linert, W., Verdaguer, M. (eds.): Molecular magnets: recent highlights. Springer, BerlinGoogle Scholar
  53. 53.
    Yoshii, K.: Magnetic properties of perovskite GdCrO3. J. Solid State Chem. 159, 204–208 (2001)ADSCrossRefGoogle Scholar
  54. 54.
    Wang, W., Chen, D., Lv, D., Liu, J., Li, Q., Peng, Z.: J. Phys. Chem. Solids. 108(39), (2017)Google Scholar
  55. 55.
    Prijic, S., Scancar, J., Romih, R., Cemazar, M., Bregar, V.B., Znidarsic, A., Sersa, G.: Increased cellular uptake of biocompatible superparamagnetic iron oxide nanoparticles into malignant cells by an external magnetic field. J. Membr. Biol. 236, 167–179 (2010)CrossRefGoogle Scholar
  56. 56.
    Alborzi, Z., Hassanzadeh, A., Golzan, M.: Int. J. Nanosci. Nanotechnol. 8, 93 (2012)Google Scholar
  57. 57.
    Sun, C., Du, K., Fang, C., et al.: PEG-mediated synthesis of highly dispersive multifunctional superparamagnetic nanoparticles: their physicochemical properties and function in vivo. J. Am. Chem. Soc. nano 4(4), 2402 (2010)Google Scholar
  58. 58.
    Bulte, J.W.M., Brooks, R.A., Moskowitz, B.M, Bryant Jr, L. H., Frank, J. A.: Relaxometry and magnetometry of the MR contrast agent MION–46L. Magn. Reson Med. 42, 379 (1999)Google Scholar
  59. 59.
    Bouhou, S., Essaoudi, I., Ainane, A., Saber, M., Dujardin, F., de Miguel, J.J.: Hysteresis loops and susceptibility of a transverse Ising nanowire. J. Magn. Magn. Mater. 324, 2434–2441 (2012)ADSCrossRefGoogle Scholar
  60. 60.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)ADSCrossRefGoogle Scholar
  61. 61.
    Deviren, B., Batı, M., Keskin, M.: The effective-field study of a mixed spin-1 and spin-5/2 Ising ferrimagnetic system. Phys. Scr. 79, 065006 (2009)ADSCrossRefGoogle Scholar
  62. 62.
    Masrour, R., Jabar, A., Benyoussef, A., Hamedoun, M., Bahmad, L.: Hysteresis and compensation behaviors of mixed spin-2 and spin-1 hexagonal Ising nanowire core–shell structure. Phys. B. 472, 19–24 (2015)ADSCrossRefGoogle Scholar
  63. 63.
    Masrour, R., Jabar, A., Benyoussef, A., Hamedoun, M.: Mixed spin-5/2 and spin-2 Ising ferrimagnetic system on the Bethe lattice. J. Magn. Magn. Mater. 393, 151–156 (2015)ADSCrossRefGoogle Scholar
  64. 64.
    Peng, Z., Wang, W., Lv, D., Liu, R.J., Li, Q.: Magnetic properties of a cubic nanoisland in the longitudinal magnetic field: A Monte Carlo study. Superlattice. Microst. 109, 675–686 (2017)ADSCrossRefGoogle Scholar
  65. 65.
    Şarlı, N., Akbudak, S., Ellialtıoğlu, M.: The peak effect (PE) region of the antiferromagnetic two layer Ising nanographene. Phys. B. 452, 18–22 (2014)ADSCrossRefGoogle Scholar
  66. 66.
    Chandra, S., Noronha, G., Dietrich, S., Lang, H., Bahadur, D.: Dendrimer-magnetic nanoparticles as multiple stimuli responsive and enzymatic drug delivery vehicle. J. Magn. Magn. Mater. 380, 7–12 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Condensed Matter and Interdisciplinary Sciences Department of Physics (LaMCScI), Faculty of SciencesUniversity Mohammed VRabatMorocco
  2. 2.Laboratory of Materials, Processes, Environment and Quality, National School of Applied SciencesCady Ayyed UniversitySafiMorocco
  3. 3.Hassan II Academy of Science and TechnologyRabatMorocco
  4. 4.Institute of Nanomaterial’s and Nanotechnology, MAScIRRabatMorocco

Personalised recommendations