Advertisement

One-Dimensional Metallo-Superconductor Photonic Crystals as a Smart Window

  • Arafa H. AlyEmail author
  • Ayman A. Ameen
  • Hussein A. Elsayed
  • S. H. Mohamed
  • Mahi R. Singh
Original Paper
  • 35 Downloads

Abstract

A new structure to control the electromagnetic waves has been successfully designed for smart windows applications. The present photonic crystals (PCs) smart window is designed from a unit cell of two different materials such as A (metal) and B (superconductor) of thicknesses that repeated for N periods. The numerical results are investigated based on the characteristic matrix method. It was found that the angle of incidence has a significant effect on the transmission values. At 10o angle of incidence, we found more than 80% of the visible light and a near IR is transmitted whereas at 60o angle of incidence, the photonic band gap (PBG) begins to appear at wavelengths greater than 800 nm and the visible light transmittance remains more than 80%. Also, the dependence of the transmittance values on the periodicity and thickness of the proposed design was investigated. The proposed structure could be of potential use as a smart window in low-temperature applications and space industry.

Keywords

Photonic crystals Smart window Metal-superconductor 

References

  1. 1.
    P. A. Sabelhaus, J. E. Decker, Optical, Infrared, and Millimeter Space Telescopes 5487–14 (2004);  https://doi.org/10.1117/12.549895
  2. 2.
    Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    Aly, A.H., El-Naggar, S.A., Elsayed, H.A.: Tunability of two dimensional n-doped semiconductor photonic crystals based on the Faraday effect. Opt. Express. 23, –15038, 15046 (2015)Google Scholar
  5. 5.
    J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 2008)Google Scholar
  6. 6.
    Aly, A.H.: Metallic and superconducting photonic crystal. J. Supercond. Nov. Magn. 21, 421–425 (2008)CrossRefGoogle Scholar
  7. 7.
    Aly, A.H., Ryu, S.W., Hsu, H.T., Wu, C.J.: THz transmittance in onedimensional superconducting nanomaterial-dielectric superlattice. Mater. Chem. Phys. 113, 382–384 (2009)Google Scholar
  8. 8.
    Lampert, C.: Smart switchable glazing for solar energy and daylight control. Sol Energy Mater Sol Cells. 52(3–4), 207–221 (1998)CrossRefGoogle Scholar
  9. 9.
    Granqvist, C.G., Bayrak Pehlivan, I., Ji, Y.X., Li, S.Y., Niklasson, G.A.: Electrochromics and thermochromics for energy efficient fenestration: functionalities based on nanoparticles of In2O3:Sn and VO2. Thin Solid Films. 559, 2–8 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Tan, X., et al.: Sci Rep. 1, 2 (2012)Google Scholar
  11. 11.
    Ke, Y., Balin, I., Wang, N., Lu, Q., Tok, A.I.Y., White, T.J., Magdassi, S., Abdulhalim, I., Long, Y.: Two-dimensional SiO2/VO2 photonic crystals with statically visible and dynamically infrared modulated for smart window deployment. ACS Appl. Mater. Interfaces. 8(48), 33112–33120 (2016)CrossRefGoogle Scholar
  12. 12.
    Kokogiannakis, G., Darkwa, J., Aloisio, C.: Simulating thermochromic and heat mirror glazing systems in hot and cold climates. Energy Procedia. 62, 22–31 (2014)CrossRefGoogle Scholar
  13. 13.
    Yang, P., Sun, P., Mai, W.: Electrochromic energy storage devices. Mater. Today. 19(7), 394–402 (2016)CrossRefGoogle Scholar
  14. 14.
    T. Katase, T. Onozato, M. Hirono, T. Mizuno, and H. Ohta, Sci Rep., vol. 6, no. May,1(2016)Google Scholar
  15. 15.
    Deepa, M., Awadhia, A., Bhandari, S., Agrawal, S.L.: Electrochromic performance of a poly(3,4-ethylenedioxythiophene)-Prussian blue device encompassing a free standing proton electrolyte film. Electrochim Acta. 53(24), 7266–7275 (2008)CrossRefGoogle Scholar
  16. 16.
    Ke, Y., Zhou, C., Zhou, Y., Wang, S., Chan, S.H., Long, Y.: Emerging thermal-responsive materials and integrated techniques targeting the energy-efficient smart window application. Adv Funct Mater. 1800113, 28 (2018).  https://doi.org/10.1002/adfm.201800113 CrossRefGoogle Scholar
  17. 17.
    Aly, A.H., Mohamed, D.: J. Supercond. Nov. Magn. 1699, 18 (2015)Google Scholar
  18. 18.
    A. H. Aly, A. Ameen, And D. Vigneswaran, J Supercond Nov Magn (2018).  https://doi.org/10.1007/s10948-018-4716-6
  19. 19.
    Aly, A.H., Elsayed, H.A., Ameen, A.A., Mohamed, S.H.: Int J Mod Phys B. 1750239, 31 (2017)Google Scholar
  20. 20.
    Hung, H.-C., Wu, C.-J., Chang, S.-J.: A mid-infrared tunable filter in a semiconductor–dielectric photonic crystal containing doped semiconductor defect. Solid State Commun. 151, 1677–1680 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Aly, A.H., Hsu, H.-T., Yang, T.-J., Wu, C.-J., Hwangbo, C.K.: Extraordinary optical properties of a superconducting periodic multilayer in near-zero-permittivity operation range. J Appl Phys. 105, 083917 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Aly, A.H., Sayed, H.: J Nanophotonics. 4(046020), 11 (2017)Google Scholar
  23. 23.
    Aly, A.H., Sayed, W.: J. Supercond. Nov. Magn. 1981, 29 (2016)Google Scholar
  24. 24.
    Srivastava, S.: Study of defect modes in 1d photonic crystal structure containing high and low T c superconductor as a defect layer. J Supercond Nov Magn. 27, 101–114 (2014)CrossRefGoogle Scholar
  25. 25.
    American Institute of Physics (Author), Dwight E. Gray (Editor), Physics, American Institute of Physics Handbook, Third Edition, 3rd Edition (McGraw-Hill, New York, 1972)Google Scholar
  26. 26.
    Aly, A.H.: The transmittance of two types of one-dimensional periodic structures. Mater. Chem. Phys. 115, 391–394 (2009)CrossRefGoogle Scholar
  27. 27.
    Aly, A.H., Ryu, S.-W., Wu, C.-J.: J Nonlinear Opt Phys Mater (JNOPM). 17(3), 255 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Joseph, S., Khurram Hafiz, A.: Omnidirectional reflector using one-dimensional dispersive photonic heterostructure. Optik. 125, 2734–2738 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.TH-PPM Group, Physics Department, Faculty of ScienceBeni-Suef UniversityBeni-SuefEgypt
  2. 2.Physics Department, Faculty of ScienceSohag UniversitySohagEgypt
  3. 3.Department of Physics and AstronomyWestern Ontario UniversityLondonCanada

Personalised recommendations