Skyrmion Emergence Mediated by Antiferromagnetic Interlayer Exchange Coupling

  • Mouad FattouhiEmail author
  • Moulay Youssef El Hafidi
  • Mohamed El Hafidi
Original Paper


Skyrmions are considered as topologically protected magnetic textures; they are covering a large area of applications. In this work, we studied using micromagnetic simulations the emergence of skyrmions in a nanodisk stacked in a FM/NM/FM multilayer system. We show how the skyrmion is formed through the antiferromagnetic interlayer exchange coupling (IEC). We also show the impact of the IEC on skyrmion size in both layers. We try as a conclusion to identify the range of IEC where skyrmions could exist in such systems.


Skyrmions Interlayer exchange coupling Magnetic nanodisks Nonmagnetic layer 


  1. 1.
    Mhlbaüer, S., Binz, B., Jonietz, F., Peiderer, C., Rosch, A., Neubauer, A., Georgii, R., Bӧni, P.: Skyrmion lattice in a chiral magnet. Science. 323, 915–919 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Bogdanov, A.N., Rößler, U.K.: Chiral symmetry breaking in magnetic thin films and multilayers. Phys. Rev. Lett. 87, 037203 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Tokunaga, Y., Yu, X.Z., White, J.S., Rønnow, H.M., Morikawa, D., Taguchi, Y., Tokura, Y.: A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat. Commun. 6, 7638 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    Dzyaloshinskii, I.: Sov. Phys. JETP. 5, 1259 (1957)Google Scholar
  5. 5.
    Moriya, T.: New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228–230 (1960)ADSCrossRefGoogle Scholar
  6. 6.
    Belmeguenai, M., Gabor, M.S., Roussigné, Y., Petrisor Jr., T., Mos, R.B., Stashkevich, A., Chérif, S.M., Tiusan, C.: Phys. Rev. B. 97, 054425 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    Jeong, T., Pickett, W.E.: Implications of the B20 crystal structure for the magnetoelectronic structure ofMnSi. Phys. Rev. B. 70, 075114 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Yu, X.Z., Onose, Y., Kanazawa, N., Park, J.H., Han, J.H., Matsui, Y., Nagaosa, N., Tokura, Y.: Real-space observation of a two-dimensional skyrmion crystal. Nature. 465, 901–904 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Sampaio, J., Cros, V., Rohart, S., Thiaville, A., Fert, A.: Nat. Nano. 8, 839–844 (2013)CrossRefGoogle Scholar
  10. 10.
    Kézsmárki, I., Bordács, S., Milde, P., Neuber, E., Eng, L.M., White, J.S., Rønnow, H.M., Dewhurst, C.D., Mochizuki, M., Yanai, K., Nakamura, H., Ehlers, D., Tsurkan, V., Loidl, A.: Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat. Mater. 14, 1116–1122 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Fattouhi, M., El Hafidi, M.Y., El Hafidi, M.: Single skyrmion induced by external magnetic field in CoFeB ferromagnetic alloy nanodisks. J. Magn. Magn. Mater. 468, 8–13 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    Okubo, T., Chung, S., Kawamura, H.: Multiple-qStates and the skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. Phys. Rev. Lett. 108, 017206 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Lin, Y.S., Grundy, P.J., Giess, E.A.: Bubble domains in magnetostatically coupled garnet films. Appl. Phys. Lett. 23, 485–487 (1973)ADSCrossRefGoogle Scholar
  14. 14.
    Heinze, S., Bergmann, K.V., Menzel, M., Brede, J., Kubetzka, A., Wiesendanger, R., Bihlmayer, G., Blügel, S.: Nat. Phys. 7, 713–718 (2011)CrossRefGoogle Scholar
  15. 15.
    Dai, Y.Y., Wang, H., Tao, P., Yang, T., Ren, W.J., Zhang, Z.D.: Skyrmion ground state and gyration of skyrmions in magnetic nanodisks without the Dzyaloshinsky-Moriya interaction. Phys. Rev. B. 88, 054403 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Fattouhi, M., El Hafidi, M.Y., El Hafidi, M., Kassiba, A., Yaacoub, N., Supercond, J.: Study of nucleation/annihilation process and vortices characteristics in Co/Py rectangular bilayers. Nov. Magn. (2018).
  17. 17.
    Bobo, J.F., Kikuchi, H., Redon, O., Snoeck, E., Piecuch, M., White, R.L.: Pinholes in antiferromagnetically coupled multilayers: Effects on hysteresis loops and relation to biquadratic exchange. Rev B. 60, 4131–4141 (1999)CrossRefGoogle Scholar
  18. 18.
    Zhu-Pei, S., Peter, L.M., John, F.L.: Phys. Rev. Lett. 69, 3678–3681 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    Vansteenkiste, A., Leliaert, J., Dvornik, M., Helsen, M., Garcia-Sanchez, F., Van Waeyenberge, B.: AIP Adv. 107133, 4 (2014)Google Scholar
  20. 20.
    Abo, G.S., Hong, Y.-K., Park, J., Lee, J., Lee, W., Choi, B.-C.: IEEE Trans On Mag. 49, 4937 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Daughton, J.: Magnetoelectronics. 205-229, 379–380 (2004)Google Scholar
  22. 22.
    Johnson, M.T.: Structural dependence of the oscillatory exchange interaction across Cu layers. Phys. Rev. Lett. 68, 2688–2691 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    Zhang, X., Zhou, Y., Ezawa, M.: Nat. Commun. 10293, 7 (2016)ADSGoogle Scholar
  24. 24.
    Koshibae, W., Nagaosa, N.: Theory of skyrmions in bilayer systems. Sci. Rep. 7, 42645 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Condensed Matter Physics Laboratory, Faculty of Sciences Ben M’SikHassan II University of CasablancaCasablancaMorocco

Personalised recommendations