Advertisement

Spin Glass Behavior in La0.7Ca0.23Sr0.07MnO3 Nanofibers Obtained by Electrospinning

  • L. A. Burrola-GándaraEmail author
  • L. Vázquez-Zubiate
  • D. M. Carrillo-Flores
  • J. T. Elizalde-Galindo
Original Paper
  • 29 Downloads

Abstract

This work contributes to the development of new nanostructured mixed valence manganites and to explore and optimize their magnetic properties at 1-D level. Nanofibers of La0.7Ca0.23Sr0.07MnO3 manganite were fabricated using the electrospinning method and three different heat treatments to determine how the nanostructure affects its thermomagnetic behavior. From scanning electron microscopy, nanofibers morphology was observed and average diameters of 75, 94, and 97 nm were identified after heat treatments of 973, 1073, and 1173 K, respectively. According to X-ray diffraction technique, a single-phase orthorhombic structure was defined for each sample. Average crystallite sizes were determined as 47, 49, and 58 nm. A ferromagnetic to paramagnetic transition with Curie temperatures of 297, 305, and 314 K were identified, respectively. Furthermore, a glassy state was induced by nanofibers agglomeration. The spin glass and irreversible temperatures diminished as the magnetic field was increased and a highly anisotropic state was evidenced for all samples. Thermomagnetic behavior in manganites showed to be significantly influenced by the one-dimensional structure and exposed how the dimensionality proportionated by the fabrication method can be used to adjust magnetic properties.

Keywords

Manganite Nanofibers Spin glass Thermomagnetic behavior 

Notes

Acknowledgements

This work was supported by Professor Professional Development Program [F-PROMEP-39/Rev-04] SEP, México.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Dang, N.T., Zakhvalinskii, V.S., Kozlenko, D.P., Phan, T.-L., Kichanov, S.E., Trukhanov, S.V., Trukhanov, A.V., Nekrasova, Y.S., Taran, S.V., Ovsyannikov, S.V., Jabarov, S.H., Trukhanova, E.L.: Effect of Fe doping on structure, magnetic and electrical properties La0.7Ca0.3Mn0.5Fe0.5O3 manganite. Ceram. Int. 44, 14974–14979 (2018).  https://doi.org/10.1016/j.ceramint.2018.05.124 CrossRefGoogle Scholar
  2. 2.
    Ezaami, A., Sellami-Jmal, E., Chaaba, I., Cheikhrouhou-Koubaa, W., Cheikhrouhou, A., Hlil, E.K.: Effect of elaborating method on magnetocaloric properties of La0.7Ca0.2Ba0.1MnO3 manganite. J. Alloys Compd. 685, 710–719 (2016).  https://doi.org/10.1016/j.jallcom.2016.05.332 CrossRefGoogle Scholar
  3. 3.
    Gómez, A., Chavarriaga, E., Supelano, I., Parra, C.A., Morán, O.: Tuning the magnetocaloric properties of La0.7Ca0.3MnO3 manganites through Ni-doping. Phys. Lett. A. 382, 911–919 (2018).  https://doi.org/10.1016/j.physleta.2018.01.030 ADSCrossRefGoogle Scholar
  4. 4.
    Zhou, X., Zhao, Y., Cao, X., Xue, Y., Xu, D., Jiang, L., Su, W.: Fabrication of polycrystalline lanthanum manganite (LaMnO3) nanofibers by electrospinning. Mater. Lett. 62, 470–472 (2008).  https://doi.org/10.1016/j.matlet.2007.05.063 CrossRefGoogle Scholar
  5. 5.
    Hayat, K., Shaheen Shah, S., Yousaf, M., Javid Iqbal, M., Ali, M., Ali, S., Ajmal, M., Iqbal, Y.: Processing, device fabrication and electrical characterization of LaMnO3 nanofibers. Mater. Sci. Semicond. Process. 41, 364–369 (2016).  https://doi.org/10.1016/j.mssp.2015.10.009 CrossRefGoogle Scholar
  6. 6.
    Hayat, K., Javid Iqbal, M., Rasool, K., Iqbal, Y.: Device fabrication and dc electrical transport properties of barium manganite nanofibers (BMO-NFs). Chem. Phys. Lett. 616-617, 126–130 (2014).  https://doi.org/10.1016/j.cplett.2014.10.046 ADSCrossRefGoogle Scholar
  7. 7.
    Yensano, R., Pinitsoontorn, S., Amornkitbamrung, V., Maensiri, S.: Fabrication and magnetic properties of electrospun La0.7Sr0.3MnO3 nanostructures. J. Supercond. Nov. Magn. 27, 1553–1560 (2014).  https://doi.org/10.1007/s10948-013-2474-z CrossRefGoogle Scholar
  8. 8.
    Li, L., Liang, L., Wu, H., Zhu, X.: One-dimensional perovskite manganite oxide nanostructures: recent developments in synthesis, characterization, transport properties, and applications. Nanoscale Res. Lett. 11, 121 (2016).  https://doi.org/10.1186/s11671-016-1320-1 ADSCrossRefGoogle Scholar
  9. 9.
    Yi, C., Lin, B., Sun, Y., Yang, H., Zhang, X.: Structure, morphology and electrochemical properties of LaxSr1-xCo0.1Mn0.9O3-δ perovskite nanofibers prepared by electrospinning method. J. Alloys Compd. 624, 31–39 (2015).  https://doi.org/10.1016/j.jallcom.2014.10.178 CrossRefGoogle Scholar
  10. 10.
    Moghaddam, H.M., Nasirian, S.: Dependence of activation energy and lattice strain on TiO2 nanoparticles? Nanoscience Methods. 1(1), 201–212 (2012).  https://doi.org/10.1080/17458080.2011.620023 CrossRefGoogle Scholar
  11. 11.
    Shang, C., Guo, S., Wang, R.: Positive to negative ZFC exchange bias in La0.5Sr0.5Mn0.8Co0.2O3 ceramics. Sci. Rep. 6(25703), (2016).  https://doi.org/10.1038/srep25703
  12. 12.
    Selmi, R., Cherif, W., Barquín, L.F., de la Fuente Rodríguez, M., Ktari, L.: Structure and spin glass behavior in La0.77Mg0.23-x MnO3 (0 ≤ x ≤ 0.2) manganites. J. Alloys Compd. 738, 528–539 (2018).  https://doi.org/10.1016/j.jallcom.2017.12.189 CrossRefGoogle Scholar
  13. 13.
    Ling, L., Zhang, L., Zhang, Z., Pi, L., Tan, S., Zhang, Y.: Cluster-glass state and the effect of A-site magnetism in electron-doped manganites. Solid State Commun. 149, 1168–1172 (2009).  https://doi.org/10.1016/j.ssc.2009.05.005 ADSCrossRefGoogle Scholar
  14. 14.
    Fertman, E., Dolya, S., Desnenko, V., Beznosov, A., Kajnaková, M., Feher, A.: Cluster glass magnetism in the phase separated Nd2/3Ca1/3MnO3 perovskite. J. Magn. Magn. Mater. 324, 3213–3217 (2012).  https://doi.org/10.1016/j.jmmm.2012.05.043 ADSCrossRefGoogle Scholar
  15. 15.
    Tiwari, P., Rath, C.: Evolution of structure and magnetic properties of stoichiometry and oxygen rich LaMnO3 nanoparticles. J. Magn. Magn. Mater. 441, 635–641 (2017).  https://doi.org/10.1016/j.jmmm.2017.06.020 ADSCrossRefGoogle Scholar
  16. 16.
    Ade, R., Singh, R.: Effect of grain size on charge and spin correlations in Bi0.5Ca0.5MnO3 manganite nanoparticles. J. Magn. Magn. Mater. 418, 273–279 (2016).  https://doi.org/10.1016/j.jmmm.2016.02.028 ADSCrossRefGoogle Scholar
  17. 17.
    Rostamnejadi, A., Venkatesan, M., Salamati, H., Ackland, K., Gholizadeh, H., Kameli, P., Coey, J.M.D.: Magnetic properties, exchange bias, and memory effects in core-shell superparamagnetic nanoparticles of La0.67Sr0.33MnO3. J. Appl. Phys. 121, 173902 (2017).  https://doi.org/10.1063/1.4982893 ADSCrossRefGoogle Scholar
  18. 18.
    Joy, P.A., Kumar, P.S.A., Date, S.K.: The relationship between field-cooled and zero-field-cooled susceptibilities of some ordered magnetic systems. J. Phys. Condens. Matter. 10, 11049 (1998). http://iopscience.iop.org/0953-8984/10/48/024)ADSCrossRefGoogle Scholar
  19. 19.
    Issaoui, F., Bejar, M., Dhahri, E., Bekri, M., Lachkar, P., Hlil, E.K.: Crystal, spin glass, Griffiths phases and magnetocaloric properties of the Sr1.5Nd0.5MnO4 compound. Physica B. 414, 42–49 (2013).  https://doi.org/10.1016/j.physb.2012.12.039 ADSCrossRefGoogle Scholar
  20. 20.
    Zhang, Y.: Magnetic relaxation behavior in Tb-doped perovskite manganite. J. Magn. Magn. Mater. 323, 1–3 (2011).  https://doi.org/10.1016/j.jmmm.2010.08.045 ADSCrossRefGoogle Scholar
  21. 21.
    Pana, O., Soran, M.L., Leostean, C., Macavei, S., Gautron, E., Teodorescu, C.M., Gheorghe, N., Chauvet, O.: Interface charge transfer in polypyrrole coated perovskite manganite magnetic nanoparticles. J. Appl. Phys. 111, 044309 (2012).  https://doi.org/10.1063/1.3686662?ver=pdfcov ADSCrossRefGoogle Scholar
  22. 22.
    Nisha, P., Pillai, S.S., Varma, M.R., Suresh, K.G.: Influence of cobalt on the structural, magnetic and magnetocaloric properties of La0.67Ca0.33MnO3. J. Magn. Magn. Mater. 327, 189–195 (2013).  https://doi.org/10.1016/j.jmmm.2012.09.029 ADSCrossRefGoogle Scholar
  23. 23.
    Manh, D.H., Phong, P.T., Nam, P.H., Tung, D.K., Phuc, N.X., Lee, I.-J.: Structural and magnetic study of La0.7Sr0.3MnO3 nanoparticles and AC magnetic heating characteristics for hyperthermia applications. Physica B. 444, 94–102 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Londoñoo-Calderon, V., Rave-Osorio, L.C., Restrepo, J., Játiva, J., Jurado, J.F., Arnache, O., Restrepo-Parra, E.: Structural and magnetic properties of La1-x (Ca,Sr)xMnO3 powders produced by the hydrothermal method. J. Supercond. Nov. Magn. 31, 4153–4162 (2018).  https://doi.org/10.1007/s10948-018-4625-8 CrossRefGoogle Scholar
  25. 25.
    C. A. Cardoso, F. M. Araujo-Moreira, V. P. S. Awana, E. Takayama-Muromachi, O. F. de Lima, H. Yamauchi and M. Karppinen. Spin glass behavior in RuSr2Gd1.5Ce0.5Cu2O10-δ, Phys. Rev. B 67, 020407(R) (2003). DOI:  https://doi.org/10.1103/PhysRevB.67.020407
  26. 26.
    Patricia Darlene Mitchler. Characterization of Hysteresis in Magnetic Systems: A Preisach Approach (PhD Thesis) (2000). Department of Physics and Astronomy, University of Manitoba, Winnipeg, ManitobaGoogle Scholar
  27. 27.
    Kumar, A., Tandon, R.P., Awana, V.P.S.: Successive spin glass, cluster ferromagnetic and superparamagnetic transitions in RuSr2Y1.5Ce0.5Cu2O10 complex magneto-superconductor. Eur. Phys. J. B. 85(238), (2012).  https://doi.org/10.1140/epjb/e2012-30075-5

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Ingeniería y TecnologíaUniversidad Autónoma de Ciudad JuárezCiudad JuárezMéxico

Personalised recommendations