Advertisement

Ab Initio Calculations of New Full Heusler Alloys Rh2ZrX (X = Al, Ga, In, Si, Ge, Sn)

  • Ahmad Asadi Mohammad Abadi
  • Ghasem ForozaniEmail author
  • Seyyed Mahdy Baizaee
  • Abdolrasoul Gharaati
Original Paper
  • 31 Downloads

Abstract

In recent years, Heusler alloys have attracted extensive attention because of their usefulness in spintronic devices. In this paper, the structural, electronic, and magnetic properties of full Heusler alloys Rh2ZrX (X = Al, Ga, In, Si, Ge, Sn) have been studied using Quantum Espresso software package based on density functional theory. Calculations have been done by GGA and GGA+U methods. The investigations on the structural properties of the alloys showed that the Rh2ZrSi alloy had the most stable structure (Ecoh = − 1.807 eV) among the six compounds reviewed. The results of GGA calculation on electronic properties of Rh2ZrX alloys show that while the Rh2ZrX (X = Al, Ga, In) alloys had metallic nature due to overlapping between conduction and valance band at Fermi level for both spin directions, the Rh2ZrX (X = Si, Ge, Sn) alloys had half-metal characteristic. Also, Rh2ZrSi and Rh2ZrGe alloys had 100% spin polarization. By studying the magnetic properties, it was found that the Rh2ZrAl and Rh2ZrSi alloys were antiferromagnetic, while the Rh2ZrGa, Rh2ZrIn, Rh2ZrGe, and Rh2ZrSn alloys were ferromagnetic materials. Also, the total spin magnetic moment of alloys was found in accordance with the Slater-Pauling rule. The results obtained using GGA+U calculation are slightly different from the results of GGA calculation.

Keywords

Ab initio calculations Heusler alloy Spin polarization Density of state Quantum espresso 

Notes

References

  1. 1.
    Amudhavalli, A., Rajeswarapalanichamy, R., Iyakutti, K.: Half metallic ferromagnetism in Ni based half Heusler alloys. Comput. Mater. Sci. 148, 87–103 (2018)CrossRefGoogle Scholar
  2. 2.
    Zemouli, M., Boudali, A., Doumi, B., Mokaddem, A., Elkeurti, M., Saadaoui, F., Khodja, M.D.: First-principles investigation of elastic, electronic, and half-metallic ferrimagnetic properties in the Mn 2 RhSi Heusler alloy. J. Super Nove Magn. 1, 3187–3192 (2016)CrossRefGoogle Scholar
  3. 3.
    Singh, M., Saini, H.S., Kumar, S., Kashyap, M.K.: Effect of substituting sp-element on half metallic ferromagnetism in NiCrSi Heusler alloy. Comput. Mater. Sci. 53, 431–435 (2012)CrossRefGoogle Scholar
  4. 4.
    Heusler, F.: Verh. Dtsch. Phys. Ges. 5, 219 (1903)Google Scholar
  5. 5.
    Amudhavalli, A., Rajeswarapalanichamy, R., Iyakutti, K.: Structural, electronic, mechanical and magnetic properties of Mn based ferromagnetic half Heusler alloys: a first principles study. J. Alloys Comp. 708, 1216–1233 (2017)CrossRefGoogle Scholar
  6. 6.
    De Boeck, J., Van Roy, W., Das, J., Motsnyi, V., Liu, Z., Lagae, L., Boeve, H., Dessein, K., Borghs, G.: Technology and materials issues in semiconductor-based magnetoelectronics. Semi. Sci Tech. 17, 342–354 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Galanakis, I.: Orbital magnetism in the half-metallic Heusler alloys. Phys. Rev. B. 71, 012413 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Galanakis, I., Mavropoulos, P., Dederichs, P.H.: Electronic structure and Slater–Pauling behaviour in half-metallic Heusler alloys calculated from first principles. J. Phy D. Appl Phys. 39, 765–775 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Galanakis, I.: Appearance of half-metallicity in the quaternary Heusler alloys. J. Phys. Condens. Matter. 16, 3089–3096 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Amari, S., Mebsout, R., Mecabih, S., Abbar, B., Bouhafs, B.: First-principle study of magnetic, elastic and thermal properties of full Heusler Co2MnSi. Intermetallics. 44, 26–30 (2014)CrossRefGoogle Scholar
  11. 11.
    Chen, J., Luo, H., Jia, P., Meng, F., Liu, G., Liu, E., Wang, W., Wu, G.: Site preference and electronic structure of Mn2RuSn: a theoretical study. J. Magn Magn Mater. 365, 132–137 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Kang, X.H., Zhang, J.M.: The structural, electronic and magnetic properties of a novel quaternary Heusler alloy TiZrCoSn. J. Phys Chem Solids. 105, 9–15 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Amirabadizadeh, A., Emami, S.A., Nourbakhsh, Z., Sadr, S.M., Baizaee, S.M.: The effect of substitution of As for Ga on the topological phase and structural, electronic and magnetic properties of Mn2ZrGa Heusler alloy. J. Super Nove Magn. 30, 1035–1049 (2017)CrossRefGoogle Scholar
  14. 14.
    Behbahani, M.A., Moradi, M., Rostami, M., Davatolhagh, S.: First principle study of structural, electronic and magnetic properties of half-Heusler IrCrZ (Z= Ge, As, sn and sb) compounds. J. Phys Chem Solids. 92, 85–93 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    De Groot, R.A., Mueller, F.M., Van Engen, P.G., Buschow, K.H.: New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024–2027 (1983)ADSCrossRefGoogle Scholar
  16. 16.
    Ma, J., Hegde, V.I., Munira, K., Xie, Y., Keshavarz, S., Mildebrath, D.T., Wolverton, C., Ghosh, A.W., Butler, W.H.: Computational investigation of half-Heusler compounds for spintronics applications. Phys. Rev. B. 95, 024411 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    Rozale, H., Khetir, M., Amar, A., Lakdja, A., Sayede, A., Benhelal, O.: Ab-initio study of half-metallic ferromagnetism in the XCsSr (X=C, Si, Ge, and Sn) half-Heusler compounds. Super Micro. 74, 146–155 (2014)CrossRefGoogle Scholar
  18. 18.
    Gupta, D.C., Bhat, I.H.: Investigation of high spin-polarization, magnetic, electronic and half-metallic properties in RuMn2Ge and RuMn2Sb Heusler alloys. Mater Sci Eng. B. 193, 70–75 (2015)CrossRefGoogle Scholar
  19. 19.
    Abada, A., Amara, K., Hiadsi, S., Amrani, B.: First principles study of a new half-metallic ferrimagnets Mn2-based full Heusler compounds: Mn2ZrSi and Mn2ZrGe. J. Magn Magn Mater. 388, 59–67 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Van Roy, W., De Boeck, J., Brijs, B., Borghs, G.: Epitaxial NiMnSb films on GaAs (001). Appl. Phys. Lett. 77, 4190–4192 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    Jourdan, M., Minar, J., Braun, J., Kronenberg, A., Chadov, S., Balke, B., Gloskovskii, A., Kolbe, M., Elmers, H.J., Schonhense, G., Ebert, H.: Direct observation of half-metallicity in the Heusler compound Co2MnSi. Nature comm. 5, 3974 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Sahariah, M.B., Ghosh, S., Singh, C.S., Gowtham, S., Pandey, R.: First-principles computation of structural, elastic and magnetic properties of Ni2FeGa across the martensitic transformation. J. Phys. Condens Matter. 25, 025502 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Zutic, I., Fabian, J., Sarma, S.D.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76(323), 323–410 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    Canko, O., Taşkın, F., Atiş, M., Kervan, N., Kervan, S.: Magnetism and half-metallicity in the Fe2ZrP Heusler alloy. J. Super and Nove Magn. 1, 2573–2578 (2016)CrossRefGoogle Scholar
  25. 25.
    Wang, F., Feng, L., Zhang, D., Tang, Q., Liu, H., Liu, H.: A new ternary titanium-based Heusler alloy. J. Super Nove Magn. 1, 817–819 (2014)CrossRefGoogle Scholar
  26. 26.
    Feng, L., Wang, F., Jiang, W., Chen, C., Zhang, Y., Ren, J., Wang, Z.: A first-principles study of a new Heusler alloy. Int J. Mater Sci Appl. 6, 108–111 (2017)Google Scholar
  27. 27.
    Zhou, T., Feng, Y., Chen, X., Yuan, H., Chen, H.: Half-metallicity and magnetism of Ti2Ni1− x CoxAl1− y Siy inverse Heusler alloys. J. Magn Magn Mater. 423, 306–313 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A.: QUANTUM SPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys Condens Matter. 21, 395502 (2009)CrossRefGoogle Scholar
  29. 29.
    Dal Corso, A.: A pseudopotential plane waves program and some case studies. In: Quantum- mechanical Ab-initio calculation of the properties of crystalline materials, pp. 155–178. Springer, Berlin (1996)CrossRefGoogle Scholar
  30. 30.
    Scandolo, S., Giannozzi, P., Cavazzoni, C., de Gironcoli, S., Pasquarello, A., Baroni, S.: First-principles codes for computational crystallography in the Quantum SPRESSO package. Zeitschrift für Kristallographie-Crystalline Materials. 220, 574–579 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    Hossain, M.A., Rahman, M.T., Khatun, M., Haque, E.: Structural, elastic, electronic, magnetic and thermoelectric properties of new quaternary Heusler compounds CoZrMnX (X= Al, Ga, Ge, In). Comput Condens Matter. 15, 31–41 (2018)CrossRefGoogle Scholar
  32. 32.
    Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B. 11, 7892 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Perdew, burke, and ernzerhof reply. Phys. Rev. Lett. 80, 891 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    Moniri, S.M., Nourbakhsh, Z., Mostajabodaavati, M.: The first principle calculation of structural, electronic and magnetic properties of MnXY (x= Ru, rh and Y= Ga, Ge, Sb) alloys. Modern Phys Lett B. 25, 2079–2090 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Wang, Z., Vergniory, M.G., Kushwaha, S., Hirschberger, M., Chulkov, E.V., Ernst, A., Ong, N.P., Cava, R.J., Bernevig, B.A.: Time-reversal-breaking Weyl fermions in magnetic Heusler alloys. Phys. Rev. Lett. 117, 23 (2016)Google Scholar
  36. 36.
    Slater, J.C.: The ferromagnetism of nickel. Phys. Rev. 49, 537–545 (1936)ADSCrossRefGoogle Scholar
  37. 37.
    Pauling, L.: The nature of the interatomic forces in metals. Phys. Rev. 54, 899–904 (1938)ADSCrossRefGoogle Scholar
  38. 38.
    Gao, Q., Xie, H.H., Li, L., Lei, G., Deng, J.B., Hu, X.R.: First-principle study on some new spin-gapless semiconductors: the Zr-based quaternary Heusler alloys. Super Micro. 85, 536–542 (2015)CrossRefGoogle Scholar
  39. 39.
    Soulen, R.J., Byers, J.M., Osofsky, M.S., Nadgorny, B., Ambrose, T., Cheng, S.F., Broussard, P.R., Tanaka, C.T., Nowak, J., Moodera, J.S., Barry, A.: Measuring the spin polarization of a metal with a superconducting point contact. Science. 282, 85–88 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ahmad Asadi Mohammad Abadi
    • 1
    • 2
  • Ghasem Forozani
    • 1
    • 3
    Email author
  • Seyyed Mahdy Baizaee
    • 4
    • 5
  • Abdolrasoul Gharaati
    • 1
    • 3
  1. 1.Department of PhysicsPayame Noor UniversityTehranIran
  2. 2.Department of Physics, Faculty of SciencePayame Noor University of RafsanjanRafsanjanIran
  3. 3.Department of PhysicsPayame Noor UniversityShirazIran
  4. 4.Department of Physics, Faculty of scienceVali-e-Asr University of RafsanjanRafsanjanIran
  5. 5.Department of Physics, Faculty of ScienceVali-e-Asr University of RafsanjanRafsanjanIran

Personalised recommendations