Advertisement

Magnetic Field Dependence of Magnetotransport Properties of MgB2/CrO2 Bilayer Thin Films

  • N. S. AlzayedEmail author
  • M. Shahabuddin
  • Shahid M. Ramey
  • S. Soltan
Original Paper
  • 7 Downloads

Abstract

In this work, we comparatively investigated two MgB2 films: one (F1) was typically fabricated using the PLD method, while the other (F2) was fabricated using the same method but on top of a 100-nm-thick CrO2 layer. Both films had a thickness of 300 nm and were annealed ex situ at 700 °C for 30 min before being investigated under an external magnetic field of up to ± 7 T. The activation energy (Uo), upper critical field (HC2), irreversibility field (Hirr), magnetoresistance (MR), and I-V characteristics for the two films were studied in detail, and the results were compared with theoretical models. XRD analysis showed that both films are c-axis-oriented, while the RRR values for the films were found to be 1.6 and 1.89, respectively. Experimental data showed a broadening of the R-T transitions for an increasing magnetic field, with such broadening observed to be wider for F2 due to surface superconductivity. The activation energy under magnetic fields ranging from 0 to 7 T was calculated using our data and compared with a theoretical model. In both films, Uo followed a parabolic curve but was higher for F2 up to 6 T before sharply decreasing, while it continued to follow the same trend for F1 up to 7 T. The theoretical model was in good agreement with F1 for the full span of magnetic fields used. HC2 and Hirr were estimated and fitted using Ginzburg–Landau theory, but although the fitting was very good for F1, some modification in fitting parameters was required to obtain the same fitting for F2. Magnetoresistance and I-V characteristics confirm that the CrO2 layer in F2 leads to faster damage to the superconductivity property for high magnetic fields and temperatures.

Keywords

Thin film MgB2 Superconductor I-V characteristics Activation energy Magnetoresistance Magnetotransport 

Notes

Funding information

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Superconductivity at 39 K in magnesium diboride. Nature. 410, 63–64 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Liu, X., Panguluri, R.P., Huang, Z.-F., Nadgorny, B.: Double percolation transition in superconductor-ferromagnet nanocomposites. Phys. Rev. Lett. 104, 035701 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Koparan, E.T., Surdu, A., Kizilkaya, K., Sidorenko, A., Yanmaz, E.: Pinning enhancement in MgB2 superconducting thin films by magnetic nanoparticles of Fe2O3. Bull. Mater. Sci. 36(6), 961–966 (2013)CrossRefGoogle Scholar
  4. 4.
    Buzdin, A.I.: Proximity effects in superconductor-ferromagnet heterostructures. Rev. Mod. Phys. 77, 935–976 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Soltan, S: Interaction of superconductivity and ferromagnetism in YBCO/LCMO heterostructures, Ph. D. thesis (2005)Google Scholar
  6. 6.
    Chiang, Y.N., Shevchenko, O.G., Kolenov, R.N.: Manifestation of coherent and spin-dependent effects in the conductance of ferromagnets adjoining a superconductor. Low Temperature Physics. 33(4), 314–320 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Belzig, W., Brataas, A., Nazarov, Y.V., Bauer, G.E.W.: Spin accumulation and Andreev reflection in a mesoscopic ferromagnetic wire. Phys. Rev. B. 62, 9726–9739 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    Monticone, E., Gandini, C., Portesi, C., Rajteri, M., Bodoardo, S., Penazzi, N., Dellarocca, V., Gonnelli, R.S.: MgB2 thin films on silicon nitride substrates prepared by an in situ method. Supercond. Sci. Technol. 17, 649–652 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Canfield, P.C., Finnemore, D.K., Bud’ko, S.L., Ostenson, J.E., Lapertot, G., Cunningham, C.E., Petrovic, C.: Superconductivity in dense MgB2 wires. Phys. Rev. Lett. 86, 2423–2426 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Pogrebnyakov, A.V., Redwing, J.M., Jones, J.E., Xi, X.X., Xu, S.Y., Li, Q., Vaithyanathan, V., Schlom, D.G.: Thickness dependence of the properties of epitaxial MgB2 thin films grown by hybrid physical-chemical vapor deposition. Appl. Phys. Lett. 82(24), 4319–4321 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Rowell, J.M.: The widely variable resistivity of MgB2 samples supercond. Sci. Technol. 16, R17 (2003)ADSGoogle Scholar
  12. 12.
    Zeinali, A., Golod, T., Krasnov, V.M.: Surface superconductivity as the primary cause of broadening of superconducting transition in Nb films at high magnetic fields. Phys. Rev. B. 94, 214506 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Kaushik, S.D., Braccini, V., Patnaik, S.: Magnetic field dependence of vortex activation energy: a comparison between MgB2, NbSe2 and Bi2Sr2Ca2Cu3O10 superconductors. Pramana. 71(6), 1335–1343 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Thompson, J.R., Sorge, K.D., Cantoni, C., Kerchner, H.R., Christen, D.K., Paranthaman, M.: Vortex pinning and slow creep in high-Jc MgB2 thin films: a magnetic and transport study. Supercond. Sci. Technol. 18, 970–976 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Alzayed, N.S., Soltan, S., Shahabuddin, M., El-Naggar, A., Kityk, I.V., Qaid, S.E., Parakkandy, J.M., Shah, M.S., Madhar, N.A.: Growth of stable bilayer CrO2/MgB2 films by pulsed laser deposition. J. Supercond. Nov. Magn. 28(2), 387–390 (2015)CrossRefGoogle Scholar
  16. 16.
    Fuchs, G., Müller, K.-H., Handstein, A., Nenkov, K., Narozhnyi, V.N., Eckert, D., Wolf, M., Schultz, L.: Upper critical field and irreversibility line in superconducting MgB2. Solid State Commun. 118(10), 497–501 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    Werthamer, N.R., Helfand, E., Hohenberg, P.C.: Temperature and purity dependence of the superconducting critical field, Hc2. III. Electron spin and spin-orbit effects. Phys. Rev. 147, 295–302 (1966)ADSCrossRefGoogle Scholar
  18. 18.
    Askerzade, I.N., Gencer, A., Güçlü, N.: On the Ginzburg–Landau analysis of the upper critical field Hc2 in MgB2. Supercond. Sci. Technol. 15, L13–L16 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    Mudgel, M., Sharath Chandra, L.S., Ganesan, V., Bhalla, G.L., Kishan, H., Awana, V.P.S.: Enhanced critical parameters of nanocarbon doped MgB2 superconductor. J. Appl. Phys. 106, 033904 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Wang, J., Shi, C., Tian, M., Zhang, Q., Kumar, N., Jain, J.K., Mallouk, T.E., Chan, M.H.W.: Proximity-induced superconductivity in nanowires: Minigap state and differential magnetoresistance oscillations. PRL. 102, 247003 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. S. Alzayed
    • 1
    Email author
  • M. Shahabuddin
    • 1
  • Shahid M. Ramey
    • 1
  • S. Soltan
    • 2
    • 3
  1. 1.Physics and Astronomy Department, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Physics, Faculty of ScienceHelwan UniversityCairoEgypt
  3. 3.Max-Planck-Institute for Intelligent SystemsStuttgartGermany

Personalised recommendations