Advertisement

Possible Superconductivity in the Brain

  • P. MikheenkoEmail author
Review Paper

Abstract

The unprecedented power of the brain suggests that it may process information quantum-mechanically. Since quantum processing is already achieved in superconducting quantum computers, it may imply that superconductivity is the basis of quantum computation in the brain too. Superconductivity could also be responsible for long-term memory. Following these ideas, the paper reviews the progress in the search for superconductors with high critical temperature and tries to answer the question about the superconductivity in brain. It focuses on recent electrical measurements of brain slices, in which graphene was used as a room-temperature quantum mediator, and argues that these measurements could be interpreted as providing evidence of superconductivity in the neural network of mammalian brains. The estimated critical temperature of superconducting network in the brain is rather high, 2022 ± 157 K. A similar critical temperature was predicted in the Little’s model for one-dimensional organic chains linked to certain molecular complexes. A reasonable suggestion is that superconductivity develops in microtubules inside the neurons of the brain.

Keywords

Superconductivity Brain Quantum Processing of Information Microtubules 

Notes

Acknowledgments

Author thanks Prof. M. Fyhn, D. O. Ø. Mjærum, and Dr. I. Mikheenko for providing samples for measurements. Dr. Y. Mikheenko is acknowledged for critically reading the paper, D. O. Ø. Mjærum for useful discussions and help with experiments and Dr. M. Jankov for help with building experimental set-up.

References

  1. 1.
    Halperin, E.H., Wolf, A.A.: Speculations of superconductivity in biological and organic systems. In: Advances in Cryogenic Engineering, vol. 17, Timmerhaus, K.D. (ed) Springer Science + Business Media LLC (1972)Google Scholar
  2. 2.
    Castelvecchi, D.: IBM's quantum cloud computer goes commercial. Nature. 543, 159 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Shim, Y.-P., Tahan, C.: Semiconductor-inspired design principles for superconducting quantum computing. Nat. Commun. 7, 11059 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Albarrán-Arriagada, F., Barrios, G.A., Sanz, M., Romero, G., Lamata, L., Retamal, J.C., Solano, E.: One-way quantum computing in superconducting circuits. Phys. Rev. A. 97, 032320 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    Hameroff, S.: The brain is both neurocomputer and quantum computer. Cogn. Sci. 31, 1035–1045 (2007)CrossRefGoogle Scholar
  6. 6.
    Weingarten, C.P., Doraiswamy, P.M., Fisher, M.P.A.: A new spin on neural processing: quantum cognition. Front. Hum. Neurosci. 10, 541 (2016)Google Scholar
  7. 7.
    Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V., Shylin, S.I.: Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature. 525, 73–76 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Gor’kov, L.P., Kresin, V.Z.: Colloquium: high pressure and road to room temperature superconductivity. Rev. Mod. Phys. 90, 011001 (2018)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Kresin, V.Z.: High-Tc hydrides: interplay of optical and acoustic modes and comments regarding the upper limit of Tc. J. of Supercond. And novel. Magn. 31, 3391 (2018)Google Scholar
  10. 10.
    Delft, D. van, Kes, P.: The discovery of superconductivity. Physics Today, September, 38 (2010)Google Scholar
  11. 11.
    Eisenstein, J.: Superconducting elements. Rev. Mod. Phys. 26, 277–291 (1954)ADSCrossRefGoogle Scholar
  12. 12.
    Daunt, J.G., Horseman, A., Mendelssohn, K.: LXX.Thermodynamical properties of some supraconductors. Phil. Mag. 27, 754–764 (1939)CrossRefGoogle Scholar
  13. 13.
    Testardi, L.R., Wernick, J.H., Royer, W.A.: Superconductivity with onset above 23° K in Nb*Ge sputtered films. Solid State Comm. 15, 1–4 (1974)Google Scholar
  14. 14.
    Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Superconductivity at 39 K in magnesium diboride. Nature. 410, 63–64 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Mikheenko, P.: Superconductivity for hydrogen economy. J.Phys. Conf Ser. 286, 012014 (2011)Google Scholar
  16. 16.
    Thapa, D.K., Pandey, A.: Evidence for superconductivity at ambient temperature and pressure in nanostructures. ArXiv. 1807, 08572 (2018)Google Scholar
  17. 17.
    Awana, V.P.S.: Short note on superconductivity at ambient temperature and pressure in silver-embedded gold nano-particles: a goldsmith job ahead. J Supercond Novel Magn. 31, 3387 (2018)Google Scholar
  18. 18.
    Kresin, V.Z., Morawitz, V.H., Wolf, S.: Superconducting state; mechanisms and properties. Oxford press, Oxford (2014)Google Scholar
  19. 19.
    Kresin, V.Z.: Paths to room-temperature superconductivity. J Supercond Novel Magn. 31, 611 (2018)Google Scholar
  20. 20.
    Mermin, N.D., Wagner, H.: Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (Nov. 1966)ADSCrossRefGoogle Scholar
  21. 21.
    Hohenberg, P.C.: Existence of long-range order in one and two dimensions. Phys. Rev. 158, 383–386 (1967)ADSCrossRefGoogle Scholar
  22. 22.
    Kosterlitz, J.M., Thouless, D.J.: Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C. 6, 1181–1203 (1973)ADSCrossRefGoogle Scholar
  23. 23.
    Gao, L., Xue, Y.Y., Chen, F., Xiong, Q., Meng, R.L., Ramirez, D., Chu, C.W., Eggert, J.H., Mao, H.K.: Superconductivity up to 164 K in HgBa2 Cam−1 Cum O2m+2+δ(m=1, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B. 50, 4260–4263 (1994)Google Scholar
  24. 24.
    Little, W.A.: Possibility of synthesizing an organic superconductor. Phys. Rev. 134, A1416–A1424 (1964)ADSCrossRefGoogle Scholar
  25. 25.
    Kresin, V., Litovchenko, C., Panasenko, A.: Effects related to pair correlation of π electrons. J. Chem. Phys. 63, 3613–3623 (1975)ADSCrossRefGoogle Scholar
  26. 26.
    Kresin, V., Little, W. (eds.): Organic superconductivity. Plenum, NY (1990)Google Scholar
  27. 27.
    Davydov, A.S.: Solitons in molecular systems. Kluwer Academic, Dordrecht (1991)Google Scholar
  28. 28.
    Mourachkine, A.: Room-temperature superconductivity. Cambridge International Science Publishing (2004)Google Scholar
  29. 29.
    Lebed, A.G. (Ed.): The physics of organic superconductors and conductors. Springer Series in Materials Science 110, Springer: Berlin, Heidelberg (2008)Google Scholar
  30. 30.
    Mikheenko, P.: Graphene-assisted transport measurements of biological samples. IEEE Xplore Digital Library 7757272 (2016)Google Scholar
  31. 31.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    Ivanchenko, Y.M., Mikheenko, P.N., Khirnyi, V.F.: Kinetics of the destruction of superconductivity by the current in the thin films. Sov Phys JETP. 53, 86 (1981)Google Scholar
  33. 33.
    Tinkham, M.: Introduction to superconductivity. McGraw-Hill, Inc., New York (1996)Google Scholar
  34. 34.
    Hameroff, S.: Quantum computation in brain microtubules? The Penrose–Hameroff ‘Orch OR’ model of consciousness Philos. Trans. R. Soc. Lond., Ser A, Math. Phys. Sci. 356, 1869 (1998)Google Scholar
  35. 35.
    Hameroff, S., Penrose, R.: Consciousness in the universe. Phys Life Rev. 11, 39–78 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Fletcher, D.A., Mullins, R.D.: Cell mechanics and the cytoskeleton. Nature. 463, 485–492 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Mikheenko, P., Deng, X., Gildert, S., Colclough, M.S., Smith, R.A., Muirhead, C.M., Prewett, P.D., Teng, J.: Phase slips in submicrometer YBaCu3O7−δ bridges. Phys. Rev. B. 72(174506), (2005)Google Scholar
  38. 38.
    Dougherty, R., Kimel, J.D.: Temperature dependence of the superconductor energy gap. ArXiv. 1212, 0423 (2012)Google Scholar
  39. 39.
    Dougherty, R., Kimel, J. D.: Superconductivity revisited. CRC Press, New York (2012)Google Scholar
  40. 40.
    Zheng, X.H., Walmsley, D.G.: Temperature-dependent gap edge in strong-coupling superconductors determined using the Eliashberg-Nambu formalism. Phys. Rev. B. 77, 104510 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    Hamo, A., Benyamini, A., Shapir, I., Khivrich, I., Waissman, J., Kaasbjerg, K., Oreg, Y., von Oppen, F., Ilani, S.: Electron attraction mediated by Coulomb repulsion. Nature. 535, 395–400 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    Flores-Livas, J.A., Sanna, A., Graužinytė, M., Davydov, A., Goedecker, S., Marques, M.A.L.: Emergence of superconductivity in doped H2O ice at high pressure. Sci. Rep. 7(6825), 6825 (2017)Google Scholar
  43. 43.
    Sahu, S., Ghosh, S., Hirata, K., Fujita, D., Bandyopadhyay, A.: Multi-level memory-switching properties of a single brain microtubule. Appl. Phys. Lett. 102, 123701 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    Sahu, S., Ghosh, S., Ghosh, B., Aswani, K., Hirata, K., Fujita, D., Bandyopadhyay, A.: Atomic water channel controlling remarkable properties of a single brain microtubule: Correlating single protein to its supramolecular assembly. Biosens. Bioelectron. 47, 141–148 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of OsloOsloNorway

Personalised recommendations