Proximity Effects of Superconductivity and Antiferromagnetism in a Nanowire

  • Siqi Zhen
  • Haiyang ZhangEmail author
  • Qinfang Zhang
  • Zhengchao Dong
Original Paper


In this paper, we theoretically study the proximity effects of s-wave superconductivity(SC) and antiferromagnetism(AFM) in a nanowire. For the half-filling case, it was found that the Andreev bound states form near the boundary between the AFM and the SC which are accompanied by the strongly localized p-wave pairing. These in-gap states remain when the system is slightly doped. For the electron or hole doped system, they merge into the upper or the lower antiferromagnetic bands gradually with the increase of doping, respectively.


Proximity effects Andreev bound states 



This work was supported by the National Natural Science Foundation of China (Grants No. 11474246, 11647072, and 11774178), and the Natural Science Foundation of Jiangsu Province (BK20160061).


  1. 1.
    Buzdin, A.I.: Proximity effects in superconductor-ferromagnet heterostructures. Rev. Mod. Phys. 77, 935 (2005) (and references therein)ADSCrossRefGoogle Scholar
  2. 2.
    Bergeret, F.S., Volkov, A.F., Efetov, K.B.: Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures. Rev. Mod. Phys. 77, 1321 (2005) (and references therein)ADSCrossRefGoogle Scholar
  3. 3.
    Buzdin, A., Bulaevskii, L.N., Panyukov, S.V.: Critical-current oscillations as a function of the exchange field and thickness of the ferromagnetic metal in an S-F-S Josephson junction. JETP Lett. 35, 178 (1982)ADSGoogle Scholar
  4. 4.
    Ryazanov, V., Oboznov, V.A., Rusanov, A.Y., Veretennikov, A.V., Golubov, A.A., Aarts, J.: Coupling of two superconductors through a Ferromagnet: evidence for a π junction. Phys. Rev. Lett. 86, 2427 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Blum, Y., Tsukernik, M.K.A., Palevski, A.: Oscillations of the superconducting critical current in Nb-Cu-Ni-Cu-Nb junctions. Phys. Rev. Lett. 89, 187004 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    Kontos, T., Aprili, M., Lesueur, J., Genet, F., Stephanidis, B., Boursier, R.: Josephson junction through a thin ferromagnetic layer: negative coupling. Phys. Rev. Lett. 89, 137007 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Bauer, A., Bentner, J., Aprili, M., Rocca, M.L.D., Reinwald, M., Wegscheider, W., Strunk, C.: Spontaneous supercurrent induced by ferromagnetic π junctions. Phys. Rev. Lett. 92, 217001 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Sellier, H., Baraduc, C., Lefloch, F., Calemczuk, R.: Half-integer Shapiro steps at the 0 − π crossover of a ferromagnetic Josephson junction. Phys. Rev. Lett. 92, 257005 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Bulaevskii, L., Eneias, R., Ferraz, A.: Superconductor-antiferromagnet-superconductor π Josephson junction based on an antiferromagnetic barrier. Phys. Rev. B 95, 104513 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Mourik, V., Zuo, K., Frolov, S.M., Plissard, S.R., Bakkers, E.P.A.M., Kouwenhoven, L.P.: Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Nadj-Perge, S., Drozdov, I., Li, J., Chen, H., Jeon, S., Seo, J., MacDonald, A., Bernevig, B., Yazdani, A.: Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Colci, M., Sun, K., Shah, N., Vishveshwara, S., Harlingen, D.: Anomalous polarization-dependent transport in nanoscale double-barrier superconductor/ferromagnet/superconductor junctions. Phys. Rev. B 85, 180512(R) (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Sun, K., Shah, N., Vishveshwara, S.: Transport in multiterminal superconductor/ferromagnet junctions having spin-dependent interfaces. Phys. Rev. B 87, 054509 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Eschrig, M.: Spin-polarized supercurrents for spintronics. Phys. Today 64, 43 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Blamire, M., Robinson, J.: The interface between superconductivity and magnetism: understanding and device prospects. J. Phys. Condens. Matter 26, 453201 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Linder, J., Robinson, J.: Superconducting spintronics. Nat. Phys. 11, 307 (2015)CrossRefGoogle Scholar
  17. 17.
    Massarotti, D., Pal, A., Rotoli, G., Longobardi, L., Blamire, M., Tafuri, F.: Macroscopic quantum tunnelling in spin filter ferromagnetic Josephson junctions. Nat. Commun. 6, 7376 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Schnyder, A.P., Ryu, S., Furusaki, A., Ludwig, A.W.W.: Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Chiu, C.K., Teo, J.C.Y., Schnyder, A.P., Ryu, S.: Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Andersen, B., Bobkova, I., Hirschfeld, P., Barash, Y.: Bound states at the interface between antiferromagnets and superconductors. Phys. Rev. B 72, 184510 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    Andersen, B., Barash, Y., Graser, S., Hirschfeld, P.: Josephson effects in d-wave superconductor junctions with magnetic interlayers. Phys. Rev. B 77, 054501 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Fulde, P., Ferrell, R.A.: Superconductivity in a strong spin-exchange field. Phys. Rev. 135, A550–A563 (1964)ADSCrossRefGoogle Scholar
  23. 23.
    Larkin, A.I., Ovchinnikov, Y.N.: Inhomogeneous State of Superconductors. Sov. Phys. JETP 20, 762 (1965)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Siqi Zhen
    • 1
    • 2
  • Haiyang Zhang
    • 2
    Email author
  • Qinfang Zhang
    • 2
  • Zhengchao Dong
    • 1
  1. 1.School of SciencesNantong UniversityNantongChina
  2. 2.Department of PhysicsYancheng Institute of TechnologyYanchengChina

Personalised recommendations