Advertisement

Superconducting Coplanar Waveguide Resonators Capable of Cofabrication with Josephson Junctions

  • Yingshan Zhang
  • Jianshe Liu
  • Changhao Zhao
  • Rutian Huang
  • Wei Chen
Original Paper
  • 5 Downloads

Abstract

Superconducting coplanar waveguide resonators and Josephson junctions are crucial components of superconducting quantum information processing chips. Resonators are usually fabricated through lift-off or etching, while Josephson junctions are made by trilayer process or double-angle evaporation. To simplify the fabrication process, we propose a scheme that uses the same process steps for both Josephson junctions and resonators. Simulations and experiments are conducted to confirm that resonators fabricated via the proposed process have quality factor comparable to those via traditional process. This work paves the way for quantum information processing on superconducting large-scale integrated circuits.

Keywords

Superconducting coplanar waveguide Resonator Quality factor Trilayer process Quantum information processing 

Notes

Acknowledgements

The authors thank professor Lian-fu Wei and my colleague Han Cai for comments that greatly improved the manuscript.

References

  1. 1.
    Lucero, E., Barends, R. , Chen, Y., Kelly, J., Mariantoni, M., Megrant, A., O’Malley, P., Sank, D., Vainsencher, A., Wenner, J., White, T., Yin, Y., Cleland, A.N., Martinis, J.M.: Computing prime factors with a Josephson phase qubit quantum processor. Nat. Phys. 8(10), 719–723 (2012). ISSN 1745–2473 1745–2481CrossRefGoogle Scholar
  2. 2.
    Ristè, D., da Silva, M.P., Ryan, C.A., Cross, A.W., Córcoles, A.D., Smolin, J.A., Gambetta, J.M., Chow, J.M., Johnson, B.R.: Demonstration of quantum advantage in machine learning. npj Quantum Inf. 3(1), 16 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Chou, K.S., Blumoff, J.Z., Wang, C.S., Reinhold, P.C., Axline, C.J., Gao, Y.Y., Frunzio, L., Devoret, M.H., Jiang, L., Schoelkopf R.J.: Deterministic teleportation of a quantum gate between two logical qubits. Nature 561(7723), 368–373 (2018). ISSN 1476–4687CrossRefGoogle Scholar
  4. 4.
    Tan, X., Zhao, Y., Liu, Q., Xue, G., Yu, H., Wang, Z.D., Yu, Y.: Realizing and manipulating space-time inversion symmetric topological semimetal bands with superconducting quantum circuits. npj Quantum Mater. 2(1), 60 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Ganzhorn, M., Egger, D.J., Barkoutsos, P.K., Ollitrault, P., Salis, G., Moll, N., Fuhrer, A., Mueller, P., Woerner, S., Tavernelli, I., Filipp, S.: Gate-efficient simulation of molecular eigenstates on a quantum computer. arXiv:1809.05057 (2018)
  6. 6.
    Materise, N.: An introduction to superconducting qubits and circuit quantum electrodynamics. In: Microwave Cavities and Detectors for Axion Research, pp. 87–95. Springer, New York (2018)Google Scholar
  7. 7.
    Zhao, C., Gen-Fang, H., Qing-Ya, Z., Jian-She, L., Tie-Fu, L., Wei, C.: Fabrication and characterization of the superconducting quantum interference device amplifier with washer type input coil. Acta Phys. Sin. 64(12), 128501 (2015)Google Scholar
  8. 8.
    Keqiang, H., Qiujiang, G., Chao, S., Yarui, Z., Hui, D., Yulin, W., Yirong, J., Xiaobo, Z., Dongning Z.: Fabrication and characterization of ultra-low noise narrow and wide band Josephson parametric amplifiers. Chin. Phys. B 26(9), 094203 (2017)CrossRefGoogle Scholar
  9. 9.
    Chapman, B.J., Rosenthal, E.I., Kerckhoff, J., Moores, B.A., Vale, L.R., Mates, J.A.B., Hilton, G.C., Lalumiere, K., Blais, A., Lehnert, K.W.: Widely tunable on-chip microwave circulator for superconducting quantum circuits. Phys. Rev. X 7, 041043 (2017)Google Scholar
  10. 10.
    Pechal, M., Besse, J.-C., Mondal, M., Oppliger, M., Gasparinetti, S., Wallraff, A.: Superconducting switch for fast on-chip routing of quantum microwave fields. Phys. Rev. Appl. 6(2), 024009 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Opremcak, A., Pechenezhskiy, I.V., Howington, C., Christensen, B.G., Beck, M.A., Leonard, E., Suttle, J., Wilen, C., Nesterov, K.N., Ribeill, G.J., Thorbeck, T., Schlenker, F., Vavilov, M.G., Plourde, B.L.T., McDermott, R.: Measurement of a superconducting qubit with a microwave photon counter. Science 361(6408), 1239–1242 (2018)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Li, G., Li, H., Liu, J.-S., Chen, W.: Fabrication and characterization of superconducting RSFQ circuits. Rare Met. 1–6 (2018)Google Scholar
  13. 13.
    Megrant, A., Neill, C., Barends, R. , Chiaro, B., Chen, Y., Feigl, L., Kelly, J., Lucero, E., Mariantoni, M., O’Malley, P.J.J., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Yin, Y., Zhao, J., Palmstrom, C.J., Martinis, J.M., Cleland A.N.: Planar superconducting resonators with internal quality factors above one million. Appl. Phys. Lett. 100(11), 113510 (2012). ISSN 00036951ADSCrossRefGoogle Scholar
  14. 14.
    Quintana, C.M., Megrant, A., Chen, Z., Dunsworth, A., Chiaro, B., Barends, R., Campbell, B., Chen, Y., Hoi, I.-C., Jeffrey, E.: Characterization and reduction of microfabrication-induced decoherence in superconducting quantum circuits. Appl. Phys. Lett. 105(6), 062601 (2014). ISSN 0003–6951ADSCrossRefGoogle Scholar
  15. 15.
    Dolan, G.J.: Offset masks for lift-off photoprocessing. Appl. Phys. Lett. 31(5), 337–339 (1977). ISSN 0003–6951ADSCrossRefGoogle Scholar
  16. 16.
    Lecocq, F., Pop, I.M., Peng, Z., Matei, I., Crozes, T., Fournier, T., Naud, C., Guichard, W., Buisson, O.: Junction fabrication by shadow evaporation without a suspended bridge. Nanotechnology 22(31), 315302 (2011). ISSN 0957–4484CrossRefGoogle Scholar
  17. 17.
    Na, Z., Jianshe, L., Li, T., Wei, W., Zhao, H., Wei, C.: Self-aligning fabrication and dc characterization of nb/alox/nb superconducting Josephson junctions. Journal of Tsinghua University(Science and Technology) 52 (11), 1555–1558 (2012)Google Scholar
  18. 18.
    Ren, J., Semenov, V.K.: Progress with physically and logically reversible superconducting digital circuits. IEEE Trans. Appl. Supercond. 21(3), 780 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Tolpygo, S.K.: Superconductor digital electronics: Scalability and energy efficiency issues. Low Temp. Phys. 42(5), 361–379 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Dial, O., McClure, D.T., Poletto, S., Keefe, G.A., Rothwell, M.B., Gambetta, J.M., Abraham, D.W., Chow, J.M., Steffen, M.: Bulk and surface loss in superconducting transmon qubits. Supercond. Sci. Technol. 29(4), 044001 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Lin, Y.-H., Nguyen, L.B., Grabon, N., Miguel, J.S., Pankratova, N., Manucharyan, V.E.: Demonstration of protection of a superconducting qubit from energy decay. Phys. Rev. Lett. 120(15), 150503 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    Dickson, N.G., Johnson, M.W., Amin, M.H., Harris, R., Altomare, F., Berkley, A.J., Bunyk, P., Cai, J., Chapple, E.M., Chavez, P., Cioata, F., Cirip, T., deBuen, P., Drew-Brook, M., Enderud, C., Gildert, S., Hamze, F., Hilton, J.P., Hoskinson, E., Karimi, K., Ladizinsky, E., Ladizinsky, N., Lanting, T., Mahon, T., Neufeld, R., Oh, T., Perminov, I., Petroff, C., Przybysz, A., Rich, C., Spear, P., Tcaciuc, A., Thom, M. C., Tolkacheva, E., Uchaikin, S., Wang, J., Wilson, A.B., Merali, Z., Rose, G.: Thermally assisted quantum annealing of a 16-qubit problem. Nat. Commun. 4, 1903 (2013)CrossRefGoogle Scholar
  23. 23.
    Wu, X., Long, J.L., Ku, H.S., Lake, R.E., Bal, M., Pappas, D.P.: Overlap junctions for high coherence superconducting qubits. Appl. Phys. Lett. 111(3), 032602 (2017). ISSN 0003–6951ADSCrossRefGoogle Scholar
  24. 24.
    Sage, J.M., Bolkhovsky, V., Oliver, W.D., Turek, B., Welander, P.B.: Study of loss in superconducting coplanar waveguide resonators. J. Appl. Phys. 109(6), 063915 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Woods, W., Calusine, G., Melville, A., Sevi, A., Golden, E., Kim, D.K., Rosenberg, D., Yoder, J.L., Oliver, W.D.: Determining interface dielectric losses in superconducting coplanar waveguide resonators. arXiv:1808.10347 (2018)
  26. 26.
    Clarke, J., Braginski, A.I.: The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems Vol. I. Wiley (2004)Google Scholar
  27. 27.
    Vissers, M.R., Kline, J.S., Gao, J., Wisbey, D.S., Pappas, D.P.: Reduced microwave loss in trenched superconducting coplanar waveguides. Appl. Phys. Lett. 100(8), 082602 (2012). ISSN 0003–6951 1077–3118ADSCrossRefGoogle Scholar
  28. 28.
    Bruno, A., de Lange, G., Asaad, S., van der Enden, K.L., Langford, N.K., DiCarlo, L.: Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates. Appl. Phys. Lett. 106(18), 182601 (2015). ISSN 0003–6951 1077–3118ADSCrossRefGoogle Scholar
  29. 29.
    Calusine, G., Melville, A., Woods, W., Das, R., Stull, C., Bolkhovsky, V., Braje, D., Hover, D., Kim, D.K., Miloshi, X., Rosenberg, D., Sevi, A., Yoder, J.L., Dauler, E., Oliver, W.D.: Analysis and mitigation of interface losses in trenched superconducting coplanar waveguide resonators. Appl. Phys. Lett. 112(6), 062601 (2018). ISSN 0003–6951 1077–3118ADSCrossRefGoogle Scholar
  30. 30.
    Chu, Y., Axline, C., Wang, C., Brecht, T., Gao, Y.Y., Frunzio, L., Schoelkopf, R.J.: Suspending superconducting qubits by silicon micromachining. Appl. Phys. Lett. 109(11), 112601 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    Liu, J., He, G., Li, G., Li, Z.W., Ahmada, K., Shan, Z.Y., Liu, J.S., Chen, W.: Modulation depth of series SQUIDs modified by Josephson junction area. Chin. Phys. B 26(9), 098501 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    Li, H., Liu, J., Cai, H., Liu, Q., Zhang, Y., Li, G., Chen, W.: Negative-inductance superconducting quantum interference device with energy dissipation of 1.38 zJ/bit measured by inductively coupled coplanar waveguide resonator. IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017)CrossRefGoogle Scholar
  33. 33.
    Ohya, S., Chiaro, B., Megrant, A., Neill, C., Barends, R., Chen, Y., Kelly, J., Low, D., Mutus, J., O’Malley, P.J.J., Roushan, P., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Yin, Y., Schultz, B.D., Palmstrm, C.J., Mazin, B.A., Cleland, A.N., Martinis, J.M.: Room temperature deposition of sputtered tin films for superconducting coplanar waveguide resonators. Supercond. Sci. Technol. 27(1), 015009 (2014). ISSN 0953–2048ADSCrossRefGoogle Scholar
  34. 34.
    Wenner, J., Barends, R., Bialczak, R.C., Chen, Y., Kelly, J., Lucero, E., Mariantoni, M., Megrant, A., O’Malley, P.J.J, Sank, D., et al.: Surface loss simulations of superconducting coplanar waveguide resonators. Appl. Phys. Lett. 99(11), 113513 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Microelectronics and NanoelectronicsTsinghua UniversityBeijingChina
  2. 2.Institute of MicroelectronicsTsinghua UniversityBeijingChina

Personalised recommendations