Structural, Infrared, Magnetic, and Electrical Properties of Ni0.6Cd0.2Cu0.2Fe2O4 Ferrites Synthesized Using Sol-Gel Method Under Different Sintering Temperatures

  • Noura Kouki
  • Sobhi HciniEmail author
  • Reema Aldawas
  • Michel Boudard
Original Paper


Ni0.6Cd0.2Cu0.2Fe2O4 ferrites were synthesized using sol-gel method under different sintering temperatures. XRD patterns with the Rietveld refinement indicate that samples crystallize in the cubic spinel structure. The increase of sintering temperature leads successively to the increase of lattice constant, average crystallite size, intensities of absorption bands, magnetization, and electrical conductivity of the prepared ferrites. Dielectric constants decrease with frequency and their behaviors have been investigated using the interfacial polarization theory predicted by Maxwell. The modulus analysis shows the presence of electrical relaxation phenomenon and non-Debye nature for the samples. An appropriate electrical equivalent circuit was used to analyze the Nyquist plots, and the results show that the conduction mechanism of the synthesized ferrites is mainly due to the grain boundary contribution.


Ferrites Sol-gel method Rietveld refinement Infrared properties, conductivity Dielectric properties 


Funding Information

This work was supported by the Deanship of Scientific Research at Al Qassim University under the research Project Number 5090-cosabu-2018-1-14-S.


  1. 1.
    Meng, Y.Y., Liu, Z.W., Dai, H.C., Yu, Y., Zeng, D.C., Shukla, S., et al.: Powder Technol. 229, 270 (2012)CrossRefGoogle Scholar
  2. 2.
    Kolekar, Y.D., Sanchez, L., Rubio, R.E., et al.: Solid State Commun. 184, 34 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Reddy, M.P., Madhuri, W., Ramana, M.V., Reddy, N.R., Kumar, K.V.S., Murthy, V.R.K., Kumar, K.S., Reddy, R.R.: J. Magn. Magn. Mater. 322, 2819 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Patil, R.P., Hankare, P.P., Garadkar, K.M., Sasikala, R.: J. Alloys Compd. 523, 66 (2012)CrossRefGoogle Scholar
  5. 5.
    Kannan, Y.B., Saravanan, R., Srinivasan, N., Ismail, I.: J. Magn. Magn. Mater. 423, 217 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    Rahimi, M., Kameli, P., Ranjbar, M., Salamati, H.: J. Nanopart. Res. 15, 1865 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Rietveld, H.M.: J. Appl. Crystallogr. 2, 65 (1969)CrossRefGoogle Scholar
  8. 8.
    Hakim, M.A., Nath, S.K., Sikder, S.S., Maria, K.H.: J. Phys. Chem. Solids. 74, 1316 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Lohar, K.S., Patange, S.M., Mane, M.L., Shirsath, S.E.: J. Mol. Struct. 1032, 105 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Houshiar, M., Jamilpanah, L.: Mater. Res. Bull. 98, 213 (2018)CrossRefGoogle Scholar
  11. 11.
    Gholizadeh, A., Jafari, E.: J. Magn. Magn. Mater. 422, 328 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Pailhé, N., Wattiaux, A., Gaudon, M., Demourgues, A.: J. Solid State Chem. 181, 1040 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Verma, K., Kumar, A., Varshney, D.: J. Alloys Compd. 526, 91 (2012)CrossRefGoogle Scholar
  14. 14.
    Anwar, M.S., Ahmed, F., Koo, B.H.: Acta Mater. 71, 100–107 (2014)CrossRefGoogle Scholar
  15. 15.
    Ahmed, M.A., Afify, H.H., El Zawawia, I.K., Azab, A.A.: J. Magn. Magn. Mater. 324, 2199 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Oumezzine, E., Hcini, S., Hlil, E.K., Dhahri, E., Oumezzine, M.: J. Alloys Compd. 615, 553 (2014)CrossRefGoogle Scholar
  17. 17.
    Khot, V.M., Salunkhe, A.B., Phadatare, M.R., Pawar, S.H.: Chem. Phys. 132, 782 (2012)Google Scholar
  18. 18.
    Rahaman, M.D., Mia, M.D., Khan, M.N.I., Hossain, A.K.M.A.: J. Magn. Magn. Mater. 404, 238 (2016)CrossRefGoogle Scholar
  19. 19.
    Zaki, H.M., Dawoud, H.A.: Physica B. 405, 4476 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Shaikh, P.A., Kambale, R.C., Rao, A.V., Kolekar, Y.D.: J. Alloys Compd. 492, 590 (2010)CrossRefGoogle Scholar
  21. 21.
    Sabri, K., Rais, A., Taibi, K., Moreau, M., Ouddane, B., Addou, A.: Physica B. 501, 38 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Ahmed, Y.M.Z.: Ceram. Int. 36, 969 (2010)CrossRefGoogle Scholar
  23. 23.
    Waje, S.B., Hashim, M., Ismail, I.: J. Magn. Magn. Mater. 323, 1433 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Ortega, N., Kumar, A., Bhattacharya, P., Majumder, S.B., Katiyar, R.S.: Phys. Rev. B. 77, 014111 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Funke, K.: Prog. Solid State Chem. 22, 111 (1993)CrossRefGoogle Scholar
  26. 26.
    Atiq, S., Majeed, M., Ahmad, A., Abbas, S.K., Saleem, M., Riaz, S., Naseem, S.: J. Magn. Magn. Mater. 43, 2486 (2017)Google Scholar
  27. 27.
    Chakrabarty, S., Pal, M., Dutta, A.: Mater. Chem. Phys. 153, 221 (2015)CrossRefGoogle Scholar
  28. 28.
    Maxwell, J.C.: Electricity and Magnetism. Oxford University Press, London (1973)Google Scholar
  29. 29.
    Jadhav, P.A., Devan, R.S., Kolekar, Y.D., Chougule, B.K.: J. Phys. Chem. Solids. 70, 396 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    Vasoya, N.H., Jha, P.K., Saija, K.G., Dolia, S.N., Zankat, K.B., Modi, K.B.: J. Electron. Mater. 45, 917 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    Saha, S., Sinha, T.P.: Phys. Rev. B. 65, 1341 (2005)Google Scholar
  32. 32.
    Padmasree, K.P., Kanchan, D.D., Kulkami, A.R.: Solid State Ionics. 177, 475 (2006)CrossRefGoogle Scholar
  33. 33.
    Bergman, R.: J. Appl. Phys. 88, 1356 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    Rao, K.S., Krishna, P.M., Prasad, D.M., Gangadharudu, D.: J. Mater. Sci. 42, 4801 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    Sivakumar, N., Narayanasamy, A., Ponpandian, N., Govindaraj, G.: J. Appl. Phys. 101, 084116 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    Selmi, A., Hcini, S., Rahmouni, H., Omri, A., Bouazizi, M.L., Dhahri, A.: J. Phase Transit. 90, 942 (2017)CrossRefGoogle Scholar
  37. 37.
    Sekulic, D.L., Lazarevic, Z.Z., Sataric, M.V., Jovalekic, C.D., Romcevic, N.Z.: J. Mater. Sci. Mater. Electron. 26, 1291 (2015)CrossRefGoogle Scholar
  38. 38.
    Dhaou, M.H., Hcini, S., Mallah, A., Bouazizi, M.L., Jemni, A.: Appl. Phys. A Mater. Sci. Process. 123, 8 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    Kotnala, R.K., Dar, M.A., Verma, V., Singh, A.P., Siddiqui, W.A.: J. Magn. Magn. Mater. 322, 3714 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    Guo, J., Zhang, H., He, Z., Li, S., Li, Z.: J. Mater. Sci. Mater. Electron. 29, 2491 (2018)CrossRefGoogle Scholar
  41. 41.
    Omri, A., Bejar, M., Dhahri, E., Es-Souni, M., Valente, M.A., Graça, M.P.F., Costa, L.C.: J Alloy. Compd. 536, 173 (2012)CrossRefGoogle Scholar
  42. 42.
    Kallel, S., Nasri, A., Kallel, N., Rahmouni, H., Peña, O., Khirouni, K.: M. Oumezzine Physica B. 406, 2172 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    Khadhraoui, S., Triki, A., Hcini, S., Zemni, S., Oumezzine, M.: J. Alloys Compd. 574, 290 (2013)CrossRefGoogle Scholar
  44. 44.
    Johnson, D.: ZView: a software program for IES analysis, version 2.8. Scribner Associates, Inc., Southern Pines (2008)Google Scholar
  45. 45.
    Shinde, S.S., Rajpure, K.Y.: J. Solid State Chem. 183, 2886 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Noura Kouki
    • 1
    • 2
  • Sobhi Hcini
    • 3
    Email author
  • Reema Aldawas
    • 1
  • Michel Boudard
    • 4
  1. 1.Department of Chemistry, College of Science and ArtsQassim UniversityBuraydahSaudi Arabia
  2. 2.Laboratory of Water, Technopole of Borj Cedria (CERTE)Membranes and Environment Biotechnology (EMBE)Hammam LifTunisia
  3. 3.Research Unit of Valorization and Optimization of Exploitation of Resources, Faculty of Science and Technology of Sidi BouzidUniversity of KairouanSidi BouzidTunisia
  4. 4.LMGP, CNRSUniversity of Grenoble AplesGrenobleFrance

Personalised recommendations