Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 2, pp 283–289 | Cite as

Correlation Between Magnetization and Particle Size of CdS Nanostructures by Solvothermal Method

  • Y. Al-DouriEmail author
  • Ali Abu Odeh
  • Yasmin Abdul Wahab
  • C. H. Voon
Original Research
  • 38 Downloads

Abstract

Micro- and nano-structures of CdS including microrods, nanoparticles, nanorods, microspheres, and nanosheets were prepared by solvothermal method using monoethanolamine (EA), ethylene glycol (EG), and ethylenediamine (EN) to act as a mixed and pure solvent at multiple Cd and S concentrations. X-ray diffraction (XRD) patterns have shown CdS micro- and nano-structures with hexagonal and wurtzite structures. Scanning electron microscopy (SEM) has depicted nanosheet existence, microsphere, and microrods of CdS at various volume ratios. Transmission electron microscopy (TEM) has shown nanorod existence and nanoparticles of CdS at various volume ratios. Optical properties have been investigated using UV-Vis. A vibrating sample magnetometer (VSM) has been used to measure the CdS nanoparticle ferromagnetism at ambient temperature. The saturation magnetization has exhibited 9.109 (10−3 emu/g). The ferromagnetic properties of CdS are referred to their structural defects.

Keywords

II-VI Nanostructure Ferromagnetic 

References

  1. 1.
    Kaur, B., Singh, K., Kumar, A.: Precursor dependent morphological and photo-catalytic behaviour of CdS nanostructures. Dyes Pigments. 137, 352–359 (2017)CrossRefGoogle Scholar
  2. 2.
    Al-Douri, Y., Khasawnehb, Q., Kiwanb, S., Hashima, U., Abd Hamidc, S.B., Reshak, A.H., Bouhemadouf, A., Amerig, M., Khenata, R.: Structural and optical insights to enhance solar cell performance of CdS nanostructures. Energy Convers. Manag. 82, 238–243 (2014)CrossRefGoogle Scholar
  3. 3.
    Maleki, M., Mirdamadi, S., Ghasemzadeh, R., Ghamsari, M.S.: Preparation and characterization of cadmium sulfide nanorods by novel solvothermal method. Mater. Lett. 62, 1993–1995 (2008)CrossRefGoogle Scholar
  4. 4.
    Thongtem, T., Phuruangrat, A., Thongtem, S.: Solvothermal synthesis of CdS nanowires templated by polyethylene glycol. Ceram. Int. 35, 2817–2822 (2009)CrossRefGoogle Scholar
  5. 5.
    Nisha, K.D., Navaneethan, M., Hayakawa, Y., Ponnusamy, S., Muthamizhchelvan, C.: Structural and morphological evolution of CdS nanosheets-based superstructures by surfactant assisted solvothermal method. Mater. Chem. Phys. 136, 1038–1043 (2012)CrossRefGoogle Scholar
  6. 6.
    Wang, Z., Yang, X., Jia, H., Wang, Y.: Preparation of self-assembled hollow microsphere CdS via solvothermal method and its optical properties. J. Mater. Sci. Mater. Electron. 27, 9725–9733 (2016)CrossRefGoogle Scholar
  7. 7.
    Ren, B., Cao, M., Zhang, Q., Huang, J., Zhao, Z., Jin, X., Li, C., Shen, Y., Wang, L.: Controllable synthesis of CdS nanowire by a facile solvothermal method and its temperature dependent photoluminescent property. J. Alloys Compd. 659, 74–81 (2016)CrossRefGoogle Scholar
  8. 8.
    Phuruangrat, A., Dumrongrojthanath, P., Yayapao, O.: Materials science in semiconductor processing Solvothermal synthesis and photocatalytic properties of CdS nanowires under UV and visible irradiation. Mater. Sci. Semicond. Process. 26, 329–335 (2014)CrossRefGoogle Scholar
  9. 9.
    Kazeminezhad, I., Hekmat, N., Kiasat, A.: Effect of growth parameters on structural and optical properties of CdS nanowires prepared by polymer controlled Solvothermal route. Fibers Polym. 15, 672–679 (2014)CrossRefGoogle Scholar
  10. 10.
    Pan, A., Lin, X., Liu, R., Li, C., He, X.: Surface crystallization effects on the optical and electric properties of CdS nanorods. Nanotechnology. 16, 2402–2406 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Wei, F., Li, G., Zhang, Z.: Synthesis of high quality CdS nanorods by solvothermal process and their photoluminescence. J. Nanopart. Res. 7, 685–689 (2005)CrossRefGoogle Scholar
  12. 12.
    Dalvand, P., Mohammadi, M.R., Fray, D.J.: One-dimensional cadmium sulfi de (CdS) nanostructures by the solvothermal process: controlling crystal structure and morphology aided by different solvents. Mater. Lett. 65, 1291–1294 (2011)CrossRefGoogle Scholar
  13. 13.
    Lai, J., Niu, W., Luque, R., Xu, G.: Solvothermal synthesis of metal nanocrystals and their applications. Nano Today. 10, 240–267 (2015)CrossRefGoogle Scholar
  14. 14.
    Dalvand, P., Mohammadi, M.R.: Controlling morphology and structure of nanocrystalline cadmium sulfide (CdS) by tailoring solvothermal processing parameters. J. Nanopart. Res. 13, 3011–3018 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Vaquero, F., Navarro, R.M., Fierro, J.L.G.: ScienceDirect evolution of the nanostructure of CdS using solvothermal synthesis at different temperature and its influence on the photoactivity for hydrogen production. Int. J. Hydrog. Energy. 41, 11558–11567 (2016)CrossRefGoogle Scholar
  16. 16.
    Zhong, S., Zhang, L., Huang, Z., Wang, S.: Applied surface science mixed-solvothermal synthesis of CdS micro/nanostructures and their optical properties. Appl. Surf. Sci. 257, 2599–2603 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Zhou, J., Zhao, G., Yang, J., Han, G.: Diphenylthiocarbazone (dithizone) -assisted solvothermal synthesis and optical properties of one-dimensional CdS nanostructures. J. Alloys Compd. 509, 6731–6735 (2011)CrossRefGoogle Scholar
  18. 18.
    Nisha, K.D., Navaneethan, M., Harish, S., Archana, J., Ponnusamy, S., Muthamizhchelvan, C., Aswal, D.K., Shimomura, M., Ikeda, H., Hayakawa, Y.: Influence of organic ligands on the formation and functional properties of CdS nanostructures. Appl. Surf. Sci. 418 ( 346–351 (2017)ADSGoogle Scholar
  19. 19.
    Yang, Z., Gao, D., Zhu, Z., Zhang, J., Shi, Z., Zhang, Z., Xue, D.: Ferromagnetism in sphalerite and wurtzite CdS nanostructures. Nanoscale Res. Lett. 8, 17–24 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Pal, K., Maiti, U.N., Majumder, T.P., Debnath, S.C., Ghosh, S., Roy, S.K., Oton, J.M.: Switching of ferroelectric liquid crystal doped with cetyltrimethylammonium bromide-assisted CdS nanostructures. Nanotechnology. 24, 125702–125711 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Ahmed, B., Kumar, S., Kumar, S., Ojha, A.K.: Shape induced (spherical, sheets and rods) optical and magnetic properties of CdS nanostructures with enhanced photocatalytic activity for photodegradation of methylene blue dye under ultra-violet irradiation. J. Alloys Compd. 679, 324–334 (2016)CrossRefGoogle Scholar
  22. 22.
    Zhang, Z., Han, L., Xie, G., Liao, Q., Zhong, B., Yu, Y.: Room-temperature ferromagnetic and optical properties of Cr-doped CdS nanoparticles via a solvothermal preparation. J. Mater. Sci. Mater. Electron. 27, 12940–12946 (2016)CrossRefGoogle Scholar
  23. 23.
    Lahewil, A.S.Z., Al-Douri, Y., Hashim, U., Ahmed, N.M.: Structural and optical investigations of cadmium sulfide nanostructures for optoelectronic applications. Sol. Energy. 86, 3234–3240 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Al-Douri, Y., Hashim, U.: Analysis and structural investigations of CdS/quartz nanostructures. Adv. Mater. Res. 925, 374–378 (2014)CrossRefGoogle Scholar
  25. 25.
    Mondal, S.P., Dhar, A., Ray, S.K.: Optical properties of CdS nanowires prepared by dc electrochemical deposition in porous alumina template. Mater. Sci. Semicond. Process. 10, 185–193 (2007)CrossRefGoogle Scholar
  26. 26.
    Meulenkamp, E.A.: Synthesis and growth of ZnO nanoparticles. J. Phys. Chem. B. 102, 5566–5572 (1998)CrossRefGoogle Scholar
  27. 27.
    Weller, H.: Colloidal semiconductor Q-particles: chemistry in the transition region between solid state and molecules. Angew. Chem. Int. Ed. 32, 41–53 (1993)CrossRefGoogle Scholar
  28. 28.
    Mahtab, R., Rogers, J.P., Singleton, C.P., Murphy, C.J.: Preferential adsorption of a “kinked” DNA to a neutral curved surface: comparisons to and implications for nonspecific DNA−protein interactions. J. Am. Chem. Soc. 118, 7028–7035 (1996)CrossRefGoogle Scholar
  29. 29.
    Kayanuma, Y.: Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys. Rev. B. 38, 9797–9809 (1988)ADSCrossRefGoogle Scholar
  30. 30.
    Madhu, C., Sundaresan, A., Rao, C.R.: Room-temperature ferromagnetism in undoped GaN and CdS semiconductor nanoparticles. Phys. Rev. B. 77, 201306–201311 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    Sundaresan, A., Bhargavi, R., Rangarajan, N., Siddesh, U., Rao, C.N.R.: Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B. 74, 161306–161313 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    Tang, J.P., Wang, L.L., Lou, H.J., Xiao, W.Z.: Magnetic properties in zinc-blende CdS induced by cd vacancies. Phys. Lett. A. 377, 572–576 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Mondal, B., Saha, S.K.: Surfactant-assisted hydrothermal synthesis of CdS nanotips: optical and magnetic properties. J. Nanopart. Res. 14, 1049–1058 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Y. Al-Douri
    • 1
    • 2
    • 3
    Email author
  • Ali Abu Odeh
    • 4
  • Yasmin Abdul Wahab
    • 1
  • C. H. Voon
    • 5
  1. 1.Nanotechnology and Catalysis Research Center (NANOCAT)University of MalayaKuala LumpurMalaysia
  2. 2.Physics Department, Faculty of ScienceUniversity of Sidi-Bel-AbbesSidi-Bel-AbbesAlgeria
  3. 3.Department of Mechatronics Engineering, Faculty of Engineering and Natural SciencesBahcesehir UniversityIstanbulTurkey
  4. 4.Khawarizmi International CollegeAl AinUnited Arab Emirates
  5. 5.Institute of Nano Electronic EngineeringUniversity Malaysia PerlisKangarMalaysia

Personalised recommendations