Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 2, pp 269–275 | Cite as

Structural, Optical, and Magnetic Properties of Hydrothermally Grown Fe-Doped ZnO Nanorod Arrays on Glass Substrate

  • Morteza Asemi
  • Behzad Mortezapour
  • Majid GhanaatshoarEmail author
Original Research
  • 42 Downloads

Abstract

In this paper, undoped and Fe-doped ZnO nanorod arrays were grown on glass substrate by a facile hydrothermal method. Structural, optical, and magnetic properties of the prepared nanorods were investigated. Structural investigation clearly showed that the prepared nanorods had single phase wurtzite structure without any secondary phases and the prepared undoped and Fe-doped nanorods were grown vertically. The optical characterization revealed that the optical band gap of ZnO nanorods was decreased by increasing the value of Fe concentration. Furthermore, the formation of diluted magnetic semiconductor nanorod arrays was verified. The origin of room temperature ferromagnetism is explained by the bound magnetic polaron concept.

Keywords

Diluted magnetic semiconductors Fe-doped ZnO Nanorod arrays Bound magnetic polaron 

Notes

Compliance with Ethical Standards

Declaration of Interest

This research has not been submitted for publication nor has it been published in whole or in part elsewhere. We attest to the fact that all authors listed on the title page of the manuscript have contributed significantly to the work, have read the manuscript, attest to the validity and legitimacy of the data and its interpretation, and agree to its submission to the Journal of Superconductivity and Novel Magnetism.

References

  1. 1.
    Liu, H., Cheng, X., Liu, H., Yang, J., Liu, Y., Liu, X., Gao, M., Zhang, X.: Properties of Cu and V co-doped ZnO nanoparticles annealed in different atmospheres. Superlattice. Microst. 52, 1171–1177 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Basith, N.M., Vijaya, J.J., Kennedy, L.J., Bououdina, M., Jenefar, S., Kaviyarasan, V.: Co-doped ZnO nanoparticles: structural, morphological, optical, magnetic and antibacterial studies. J. Mater. Sci. Technol. 30, 1108–1117 (2014)CrossRefGoogle Scholar
  3. 3.
    Li, D., Fang, X., Dong, W., Deng, Z., Tao, R., Zhou, S., Wang, J., Wang, T., Zhao, Y., Zhu, X.: Magnetic and electrical properties of p-type Mn-doped CuCrO2 semiconductors. J. Phys. D. 42, 055009 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Ueda, K., Tabata, H., Kawai, T.: Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 79, 988–990 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Anghel, J., Thurber, A., Tenne, D.A., Hanna, C.B., Punnoose, A.: Correlation between saturation magnetization, bandgap, and lattice volume of transition metal (M=Cr, Mn, Fe, co, or Ni) doped Zn1-xMxO nanoparticles. J. Appl. Phys. 107, 09E314 (2010)CrossRefGoogle Scholar
  6. 6.
    Jannesari, M., Asemi, M., Ghanaatshoar, M.: Sol-gel preparation of Fe and Al co-doped ZnO nanostructured materials. J. Sol-Gel Sci. Technol. 83, 181–189 (2017)CrossRefGoogle Scholar
  7. 7.
    Rensmo, H., Keis, K., Lindström, H., Södergren, S., Solbrand, A., Hagfeldt, A., Lindquist, S.E.: High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. J. Phys. Chem. B. 101, 2598–2601 (1997)CrossRefGoogle Scholar
  8. 8.
    Asemi, M., Ghanaatshoar, M.: Minimizing the charge recombination rate at the FTO/Zn2SnO4 interface by metal oxide semiconductors in DSSCs. J. Mater. Sci. 53, 7551–7561 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    Asemi, M., Mameghani, H., Ghanaatshoar, M.: Preparation and characterization of all-oxide CuFeO2:Zn/ZnO:Al transparent heterojunction diode by using all -chemical solution deposition. J. Sol-Gel Sci. Technol. 80, 201–207 (2016)CrossRefGoogle Scholar
  10. 10.
    Sharma, M., Mehra, R.M.: Effect of thickness on structural, electrical, optical and magnetic properties of co and Al doped ZnO films deposited by sol-gel route. Appl. Surf. Sci. 255, (2527–2532 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Shinde, V.R., Gujar, T.P., Lokhande, C.D., Mane, R.S., Han, S.H.: Mn doped and undoped ZnO films: a comparative structural, optical and electrical properties study. Mater. Chem. Phys. 96, 326–330 (2006)CrossRefGoogle Scholar
  12. 12.
    Paraguay, F.D.M., Miki-Yoshida, J., Morales, J., Solis, W., Estrada, L.: Influence of Al, in, cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour. Thin Solid Films. 373, 137–140 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Mamat, M.H., Malek, M.F., Hafizah, N.N., Khusaimi, Z., Musa, M.Z., Rusop, M.: Fabrication of an ultraviolet photoconductive sensor using novel nanostructured, nanohole-enhanced, aligned aluminium-doped zinc oxide nanorod arrays at low immersion times. Sens. Actuator B-Chem. 195, 609–622 (2014)CrossRefGoogle Scholar
  14. 14.
    Asemi, M., Ghanaatshoar, M.: Influence of TiO2 particle size and conductivity of the CuCrO2 nanoparticles on the performance of solid-state dye-sensitized solar cells. Bull. Mater. Sci. 40, 1379–1388 (2017)CrossRefGoogle Scholar
  15. 15.
    Wang, J.X., Sun, X.W., Yang, Y., Huang, H., Lee, Y.C., Tan, O.K., Vayssieres, L.: Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications. Nanotechnology. 17, 4995–4998 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Guo, M., Diao, P., Cai, S.: Hydrothermal growth of perpendicularly oriented ZnO nanorod array film and its photoelectrochemical properties. Appl. Surf. Sci. 249, 71–75 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Bae, S.Y., Seo, H.W., Park, J.: Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition. J. Phys. Chem. B. 108, 5206–5210 (2004)CrossRefGoogle Scholar
  18. 18.
    Kim, K.S., Kim, H.W.: Synthesis of ZnO nanorod on bare Si substrate using metal organic chemical vapor deposition. Physica B: Condens Matter. 328, 368–371 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Umar, A., Kim, S.H., Kim, J.H., Hahn, Y.B.: Structural and optical properties of ZnO nanostructures grown on silicon substrate by thermal evaporation process. Mater. Lett. 62, 167–171 (2008)CrossRefGoogle Scholar
  20. 20.
    Yi, S.H., Choi, S.K., Jang, J.M., Kim, J.A., Jung, W.G.: Low-temperature growth of ZnO nanorods by chemical bath deposition. J. Colloid Interface Sci. 313, 705–710 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Yang, L.L., Zhao, Q.X., Willander, M.: Size-controlled growth of well-aligned ZnO nanorod arrays with two-step chemical bath deposition method. J. Alloys Compd. 469, 623–629 (2009)CrossRefGoogle Scholar
  22. 22.
    Asemi, M., Ghanaatshoar, M.: Hydrothermal growth of one-dimensional Ce-doped TiO2 nanostructures for solid-state DSSCs comprising mg-doped CuCrO2. J. Mater. Sci. 52, 489–503 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    Asemi, M., Ghanaatshoar, M.: Controllable growth of vertically aligned bi-doped TiO2 nanorod arrays for all-oxide solid-state DSSCs. Appl. Phys. A Mater. Sci. Process. 122, 853 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Xu, L., Li, X.: Influence of Fe-doping on the structural and optical properties of ZnO thin films prepared by sol-gel method. J. Cryst. Growth. 312, 851–855 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Xia, C., Hu, C., Tian, Y., Chen, P., Wan, B., Xu, J.: Room-temperature ferromagnetic properties of Fe-doped ZnO rod arrays. Solid State Sci. 13, 388–393 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Ling, B., Zhao, J.L., Sun, X.W., Tan, S.T., Yang, Y., Dong, Z.L.: Electroluminescence from ferromagnetic Fe-doped ZnO nanorod arrays on p-Si. IEEE Trans. Electron Devices. 57, 1948–1952 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Liu, C.W., Chang, S.J., Hsiao, C.H., Liu, C.C., Huang, R.J., Lin, Y.S., Su, M.C., Wang, P.H., Lo, K.Y.: Diluted magnetic nanosemiconductor: Fe-doped ZnO vertically aligned nanorod arrays grown by hydrothermal synthesis. IEEE Trans. Nanotechnol. 12, 649–655 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Nguyen, N.H.T., Nguyen, T.H., Liu, Y.R., Aminzare, M., Pham, A.T.T., Cho, S., Wong, D.P., Chen, K.H., Seetawan, T., Pham, N.K., Ta, H.K.T., Tran, V.C., Phan, T.B.: Thermoelectric properties of indium and gallium dually doped ZnO thin films. ACS Appl. Mater. Interfaces. 8, 33916–33923 (2016)CrossRefGoogle Scholar
  29. 29.
    Saravanan, R., Santhi, K., Sivakumar, N., Narayanan, V., Stephen, A.: Synthesis and characterization of ZnO and Ni doped ZnO nanorods by thermal decomposition method for spintronics application. Mater. Charact. 67, 10–16 (2012)CrossRefGoogle Scholar
  30. 30.
    Chambers, S.A., Droubay, T., Wang, C.M., Lea, A.S., Farrow, R.F.C., Folks, L., Deline, V., Anders, S.: Clusters and magnetism in epitaxial Co-doped TiO2 anatase. Appl. Phys. Lett. 82, 1257–1259 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    Mao, X., Zhong, W., Du, Y.: Ferromagnetism of Ni cluster in Ni-doped ZnO by solid state reaction. J. Magn. Magn. Mater. 320, 1102–1105 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Gandhi, V., Ganesan, R., Syedahamed, H.H.A., Thaiyan, M.: Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method. J. Phys. Chem. C. 118, 9715–9725 (2014)CrossRefGoogle Scholar
  33. 33.
    Singhal, R.K., Sharma, S.C., Kumari, P., Kumar, S., Xing, Y.T., Deshpande, U.P., Shripathi, T., Saitovitch, E.: Study of electronic structure and magnetization correlations in hydrogenated and vacuum annealed Ni doped ZnO. J. Appl. Phys. 109, 063907 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Asemi, M., Ahmadi, M., Ghanaatshoar, M.: Preparation of highly conducting Al-doped ZnO target by vacuum heat-treatment for thin film solar cell applications. Ceram. Int. 44, 12862–12868 (2018)CrossRefGoogle Scholar
  35. 35.
    Asemi, M., Ghanaatshoar, M.: Conductivity improvement of CuCrO2 nanoparticles by Zn doping and their application in solid-state dye-sensitized solar cells. Cerm. Int. 42, 6664–6672 (2016)CrossRefGoogle Scholar
  36. 36.
    Asemi, M., Maleki, S., Ghanaatshoar, M.: Cr-doped TiO2-based dye-sensitized solar cells with Cr-doped TiO2 blocking layer. J. Sol-Gel Sci. Technol. 81, 645–651 (2017)CrossRefGoogle Scholar
  37. 37.
    Paraguay D, F., Morales, J., Estrada L, W., Andrade, E., Miki-Yoshida, M.: Influence of Al, In, Cu, Fe and Sn dopants in the microstructure of zinc oxide thin films obtained by spray pyrolysis. Thin Solid Films. 366, 16–27 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    Guo, W.: Design of gas sensor based on Fe-doped ZnO nanosheet-spheres for low concentration of formaldehyde detection. J. Electrochem. Soc. 163, B517–B525 (2016)CrossRefGoogle Scholar
  39. 39.
    Asemi, M., Ghanaatshoar, M.: Studying the effect of the controlled off-stoichiometry on the properties of Zn2SnO4 nanoparticles for DSSC applications. J. Mater. Sci. Mater. Electron. 29, 6730–6740 (2018)CrossRefGoogle Scholar
  40. 40.
    Asemi, M., Ghanaatshoar, M.: Boosting the photovoltaic performance of Zn2SnO4-based dye-sensitized solar cells by Si doping into Zn2SnO4. J. Am. Ceram. Soc. 100, 5584–5592 (2017)CrossRefGoogle Scholar
  41. 41.
    Beltrán, J.J., Barrero, C.A., Punnoose, A.: Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles. Phys. Chem. Chem. Phys. 17, 15284–15296 (2015)CrossRefGoogle Scholar
  42. 42.
    Fu, C.F., Liu, C., Han, L.F., Zhang, Y., Mu, H.W.: Effects of substrate temperature on the structural and magnetic properties in Cr-doped ZnO films prepared by magnetron sputtering. J. Mater. Sci. Mater. Electron. 25, 4139–4144 (2014)CrossRefGoogle Scholar
  43. 43.
    Lee, J.C., Lee, Y.H., Chiang, T.H., Su, C.W., Lee, J.S.: Influence of vacuum annealing on structural, optical, electrical, and magnetic properties of Zn0.94Co0.05 Al 0.01O diluted magnetic semiconductor thin films. IEEE Trans. Magn. 48, 3430–3433 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Morteza Asemi
    • 1
    • 2
  • Behzad Mortezapour
    • 1
    • 2
  • Majid Ghanaatshoar
    • 1
    • 2
    Email author
  1. 1.Laser and Plasma Research InstituteShahid Beheshti UniversityTehranIran
  2. 2.Solar Cells Research GroupShahid Beheshti UniversityTehranIran

Personalised recommendations