Effect of Synthesis Temperature on Structural, Optical, and Magnetic Properties of ZnO Nanoparticles Synthesized by Combustion Method

  • P. Muniraja
  • K. Sunil Kumar
  • M. Ramanadha
  • A. Sudharani
  • Muchakayala Ravi
  • R. P. VijayalakshmiEmail author
Original Paper


ZnO nanoparticles at different temperatures were synthesized by using the combustion method. The effect of synthesis temperature on the properties of the nanoparticles was studied by using XRD, FESEM, EDS, TEM, photoluminescence (PL), Raman, diffuse reflectance spectra (DRS), and VSM characterization techniques. The XRD results reveal that the grown nanoparticles have a hexagonal wurtzite structure without any impurities and agreed with EDS results. FESEM and TEM micrographs show that the ZnO nanoparticles possess a spherical shape with agglomeration free, and the size increases with increase of synthesis temperature. From DRS studies, it was noticed that the band gap decreases with increase of synthesis temperature. In PL studies, blue peak at 465 nm may be due to defect-related transitions. A sharp intense peak in Raman spectra at 485 cm−1 represents E2H mode is a characteristic of a hexagonal wurtzite structure. The magnetic studies show that the magnetization decreases from 0.0172 to 0.0042 emu/g as the synthesis temperature increases from 400 to 550 °C. ZnO synthesized at 500 °C has a large squareness ratio. These materials are potential candidates for memory devices.


ZnO nanoparticles Combustion method Ferromagnetism Spintronics 


  1. 1.
    Espitia, P.J., Soares, N.D., dos Reis Coimbra, J.S., de Andrade, N.J., Cruz, R.S., Medeiros, E.A.: Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 5, 1447–1464 (2012)CrossRefGoogle Scholar
  2. 2.
    Mang, A., Reimann, K.: Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure. Solid State Commun. 94, 251–254 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    Chen, M., Wang, X., Yu, Y.H., Pei, Z.L., Bai, X.D., Sun, C., Huang, R.F., Wen, L.S.: X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl Surf Sci. 158, 134–140 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    Sharma, A.K., Narayan, J., Muth, J.F., Teng, C.W., Jin, C., Kvit, A., Kolbas, R.M., Holland, O.W.: Optical and structural properties of epitaxial mg x Zn 1− x O alloys. Appl. Phys. Lett. 75, 3327–3329 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Dulub, O., Boatner, L.A., Diebold, U.: STM study of the geometric and electronic structure of ZnO (0 0 0 1)- Zn,(0 0 0 1̄)-O,(1 0 1̄ 0), and (1 1 2̄ 0), surfaces. Surf. Sci. 519, 201–217 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    Kruis, F.E., Fissan, H., Peled, A.: Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review. J. Aerosol Sci. 29, 511–535 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    Ishizumi, A., Kanemitsu, Y.: Structural and luminescence properties of Eu-doped ZnO nanorods fabricated by a microemulsion method. Appl. Phys. Lett. 86, 253106 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Vispute, R.D., Talyansky, V., Choopun, S., Sharma, R.P., Venkatesan, T., He, M., Tang, X., Halpern, J.B., Spencer, M.G., Li, Y.X., Salamanca-Riba, L.G.: Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices. Appl. Phys. Lett. 73, 348–350 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    Law, M., Greene, L.E., Johnson, J.C., Saykally, R., Yang, P.: Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Ohashi, N., Ebisawa, N., Sekiguchi, T., Sakaguchi, I., Wada, Y., Takenaka, T., Haneda, H.: Yellowish-white luminescence in codoped zinc oxide. Appl. Phys. Lett. 86, 091902 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Gao, S., Zhang, H., Deng, R., Wang, X., Sun, D., Zheng, G.: Engineering white light-emitting Eu-doped ZnO urchins by biopolymer-assisted hydrothermal method. Appl. Phys. Lett. 89, 123125 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Chen, C.S., Kuo, C.T., Wu, T.B., Lin, I.N.: Microstructures and electrical properties of V2O5-based multicomponent ZnO varistors prepared by microwave sintering process. Jpn. J. Appl. Phys. 36, 1169–1175 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    Tang, Z.K., Wong, G.K., Yu, P., Kawasaki, M., Ohtomo, A., Koinuma, H., Segawa, Y.: Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl. Phys. Lett. 72, 3270–3272 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    Reynolds, D.C., Look, D.C., Jogai, B.: Optically pumped ultraviolet lasing from ZnO. Solid State Commun. 99, 873–875 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    Sun, X.H., Lam, S., Sham, T.K., Heigl, F., Jürgensen, A., Wong, N.B.: Synthesis and synchrotron light-induced luminescence of ZnO nanostructures: nanowires, nanoneedles, nanoflowers, and tubular whiskers. J. Phys. Chem. B. 109, 3120–3125 (2005)CrossRefGoogle Scholar
  16. 16.
    Lin, C.C., Li, Y.Y.: Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dehydrate. Mater. Chem. Phys. 113, 334–337 (2009)CrossRefGoogle Scholar
  17. 17.
    An, L.J., Wang, J., Zhang, T.F., Yang, H.L., Sun, Z.H.: Synthesis of ZnO nanoparticles by direct precipitation method, pp. 335–338. Advanced Materials Research, Trans Tech Publications, Switzerland (2012)Google Scholar
  18. 18.
    Vasile, O.R., Andronescu, E., Ghitulica, C., Vasile, B.S., Oprea, O., Vasile, E., Trusca, R.: Synthesis and characterization of nanostructured zinc oxide particles synthesized by the pyrosol method. J. Nanopart. Res. 14, 1269 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Tani, T., Mädler, L., Pratsinis, S.E.: Homogeneous ZnO nanoparticles by flame spray pyrolisis. J. Nanopart. Res. 4, 337–343 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    Kong, L., Xang, J., Zhou, H.P., Tian, Y.P., Wu, J.Y., Jin, B.K.: A surfactant-free, precursor-induced method to flower-like ZnO nanostructures. Curr. Nanosci. 5, 474–478 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Lee, J.H., Ko, K.H., Park, B.O.: Electrical and optical properties of ZnO transparent conducting films by the sol–gel method. J. Cryst. Growth. 247, 119–125 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    Kamalasanan, M.N., Chandra, S.: Sol-gel synthesis of ZnO thin films. Thin Solid Films. 288, 112–115 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    Chang, P.C., Fan, Z., Wang, D., Tseng, W.Y., Chiou, W.A., Hong, J., Lu, J.G.: ZnO nanowires synthesized by vapor trapping CVD method. Chem. Mater. 16, 5133–5137 (2004)CrossRefGoogle Scholar
  24. 24.
    Baruah, S., Dutta, J.: Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10, 013001 (2009)CrossRefGoogle Scholar
  25. 25.
    Ni, Y., Cao, X., Wu, G., Hu, G., Yang, Z., Wei, X.: Preparation, characterization and property study of zinc oxide nanoparticles via a simple solution-combusting method. Nanotechnology. 18, 155603 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    Reddy, A.J., Kokila, M.K., Nagabhushana, H., Rao, J.L., Shivakumara, C., Nagabhushana, B.M., Chakradhar, R.P.: Combustion synthesis, characterization and Raman studies of ZnO nanopowders. Spectrochim. Acta A. 81, 53–58 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Vasei, H.V., Masoudpanah, S.M., Adeli, M., Aboutalebi, M.R.: Solution combustion synthesis of ZnO powders using CTAB as fuel. Ceram. Int. 44, 7741–7745 (2018)CrossRefGoogle Scholar
  28. 28.
    Ahmad, M., Ahmed, E., Zhang, Y., Khalid, N.R., Xu, J., Ullah, M., Hong, Z.: Preparation of highly efficient Al-doped ZnO photocatalyst by combustion synthesis. Curr. Appl. Phys. 13, 697–704 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Decremps, F., Pellicer-Porres, J., Saitta, A.M., Chervin, J.C., Polian, A.: High-pressure Raman spectroscopy study of wurtzite ZnO. Phys. Rev. B. 65, 092101 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    Gong, H., Hu, J.Q., Wang, J.H., Ong, C.H., Zhu, F.R.: Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sensors Actuator B Chem. 115, 247–251 (2006)CrossRefGoogle Scholar
  31. 31.
    Mosquera, E., Rojas-Michea, C., Morel, M., Gracia, F., Fuenzalida, V., Zárate, R.A.: Zinc oxide nanoparticles with incorporated silver: structural, morphological, optical and vibrational properties. Appl. Surf. Sci. 347, 561–568 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Ashkenov, N., Mbenkum, B.N., Bundesmann, C., Riede, V., Lorenz, M., Spemann, D., Kaidashev, E.M., Kasic, A., Schubert, M., Grundmann, M., Wagner, G.: Infrared dielectric functions and phonon modes of high-quality ZnO films. J. Appl. Phys. 93, 126–133 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    Mosquera, E., Bernal, J., Morel, M., Zarate, R.A.: Structural and optical studies of zinc oxide nanowires grown directly on zinc foil substrate by thermal evaporation method. J. Nanoeng. Nanomanuf. 2, 253–258 (2012)CrossRefGoogle Scholar
  34. 34.
    Russo, V., Ghidelli, M., Gondoni, P., Casari, C.S., Li Bassi, A.: Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide. J. Appl. Physiol. 115, 073508 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    Venkatesh, P.S., Ramakrishnan, V., Jeganathan, K.: Raman silent modes in vertically aligned undoped ZnO nanorods. Phys. B Condens. Matter. 481, 204–208 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    Simovic, B., Poleti, D., Golubovic, A., Matkovic, A., Šcepanovic, M., Babic, B., Brankovic, G.: Enhanced photocatalytic degradation of RO16 dye using Ag modified ZnO nanopowders prepared by the solvothermal method. Process. Appl. Ceram. 11, 27–38 (2017)CrossRefGoogle Scholar
  37. 37.
    Prakoso, S.P.: Hydrogen incorporation in undoped ZnO nanoparticles. World J. Condens. Matter Phys. 1, 130–136 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    Pandiyarajan, T., Mangalaraja, R.V., Karthikeyan, B., Sathishkumar, P., Mansilla, H.D., Contreras, D., Ruiz, J.: UV-A light-induced photodegradation of Acid Blue 113 in the presence of Sm-doped ZnO nanostructures. Appl. Phys. A Mater. Sci. Process. 119, 487–495 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    Rana, S.B., Singh, A., Kaur, N.: Structural and optoelectronic characterization of prepared and Sb doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 24, 44–52 (2013)CrossRefGoogle Scholar
  40. 40.
    Lavand, A.B., Malghe, Y.S.: Visible light photocatalytic degradation of 4-chlorophenol using C/ZnO/CdS nanocomposite. J. Saudi Chem. Soc. 19, 471–478 (2015)CrossRefGoogle Scholar
  41. 41.
    Mohamed Basith, N., Judith Vijaya, J., John Kennedy, L., Bououdina, M., Shenbhagaraman, R., Jayavel, R.: Influence of Fe-doping on the structural, morphological, optical, magnetic and antibacterial effect of ZnO nanostructures. J. Nanosci. Nanotechnol. 16, 1567–1577 (2016)CrossRefGoogle Scholar
  42. 42.
    Wang, J.X., Sun, X.W., Yang, Y., Kyaw, K.K., Huang, X.Y., Yin, J.Z., Wei, J., Demir, H.V.: Free-standing ZnO–CuO composite nanowire array films and their gas sensing properties. Nanotechnology. 22, 325704 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    Sundaresan, A., Bhargavi, R., Rangarajan, N., Siddesh, U., Rao, C.N.: Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B. 74, 161306 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    Xu, X., Xu, C., Dai, J., Hu, J., Li, F., Zhang, S.: Size dependence of defect-induced room temperature ferromagnetism in undoped ZnO nanoparticles. J. Phys. Chem. C. 116, 8813–8818 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • P. Muniraja
    • 1
  • K. Sunil Kumar
    • 1
  • M. Ramanadha
    • 1
  • A. Sudharani
    • 1
  • Muchakayala Ravi
    • 2
  • R. P. Vijayalakshmi
    • 1
    Email author
  1. 1.Department of PhysicsSri Venkateswara UniversityTirupatiIndia
  2. 2.School of Material Science and Engineering, Shenzhen Graduate School, University Town of ShenzhenHarbin Institute of TechnologyShenzhen CityPeople’s Republic of China

Personalised recommendations