Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 2, pp 127–144 | Cite as

Superparamagnetic Properties and Significant Applications of Iron Oxide Nanoparticles for Astonishing Efficacy—a Review

  • S. Mangala Devi
  • A. Nivetha
  • I. PrabhaEmail author
Review Paper


This paper reviewed the comprehensive literature survey on the physical, chemical, and the catalytic properties and applications of iron oxide nanoparticles. In recent years, iron oxide has made a versatile progress due to its outstanding magnetic property. The average crystallite size was reported in previous literatures in the range of 10–45 nm using Scherrer’s formula. The powder morphology was found to deliberate quasi-spherical and predominantly spherical shape. The specific surface area as measured by N2 adsorption BET isotherm was reported in the range of 17.6–26.21 m2/g. Depending on the synthesis pathway there was, an inverse or normal spinel structure could be achieved. X-ray diffraction analysis revealed the crystallite size in the range between 8 and 42 nm. Fourier transform infrared spectroscopy reported the changes in functional group, stretching vibrations in the iron oxide nanoparticles. Scanning electron microscopy analysis showed most of Fe3O4 nanoparticles were in spherical morphology with the particle size range between 10 and 26 nm. Vibrating sample magnetometer reported the magnetization value for Fe3O4 nanoparticles.


Magnetite Spinel Superparamagnetism Vibration sample magnetometer Applications Reusability 


  1. 1.
    Atkins, P.W., Overton, T.L., Rourke, J.P., Weller, M.T., Armstrong, F. A.: Inorganic Chemistry, 6th Edition. Oxford University Press, Great Britain (2014)Google Scholar
  2. 2.
    Hao, R., Xing, R.J., Xu, Z.C., Hou, Y.L., Gao, S., Sun, S.H.: Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 22, 2729–2742 (2010)Google Scholar
  3. 3.
    Dave, S.R., Gao, X.H.: Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology. WIREs Nanomed. Nanobiotechnol. 1, 583–609 (2009)Google Scholar
  4. 4.
    Krishnan, K.M., Pakhomov, A.B., Bao, Y., Blomqvist, P., Chun, Y., Gonzals, M., Giffin, K., Ji, X., Roberts, B.K.: Nanomagnetism and spin electronics: materials, microstructure and novel properties. J. Mater. Sci. 41, 793–815 (2006)ADSGoogle Scholar
  5. 5.
    Singh, V., Banerjee, V., Sharma, M.: Dynamics of magnetic nanoparticle suspensions. J. Phys. D. Appl. Phys. 42, 245006 (2009)ADSGoogle Scholar
  6. 6.
    Hansen, M.F., Jonsson, P.E., Nordblad, P., Svedlindh, P.: Critical dynamics of an interacting magnetic nanoparticle system. J. Phys. Condens. Matter. 14, 4901–4914 (2002)ADSGoogle Scholar
  7. 7.
    Guo, G.Y., Wang, Y.K., Chen, Y.Y.: Ab initio studies of the electronic structure and magnetic properties of bulk and nano-particle CeCo2. J. Magn. Magn. Mater. 272, e1193–e1194 (2004)ADSGoogle Scholar
  8. 8.
    Dutta, P., Seehra, M.S., Thota, S., Kumar, J.: A comparative study of the magnetic properties of bulk and nanocrystalline Co3O4. J. Phys. Condens. Matter. 20, 015218 (2008)ADSGoogle Scholar
  9. 9.
    Cornell, R.M., Schwertmann, U.: The iron oxides: structures, properties, reactions, occurrences and uses. Wiley, Weinheim (2003)Google Scholar
  10. 10.
    Wu, W., Xiao, X.H., Zhang, S.F., Zhou, J.A., Fan, L.X., Ren, F., Jiang, C.Z.: Large-scale and controlled synthesis of iron oxide magnetic short nanotubes: shape evolution, growth mechanism, and magnetic properties. J. Phys. Chem. C. 114(39), 16092–16103 (2010)Google Scholar
  11. 11.
    Zhang, Z., Boxall, C., Kelsall, G.H.: Photoelectrophoresis of colloidal iron oxides: 1. Hematite (α-Fe2O3). Colloids Surf. A Physicochem. Eng. Asp. 73, 145–163 (1993)Google Scholar
  12. 12.
    Wu, W., He, Q.G., Jiang, C.Z.: Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397–415 (2008)ADSGoogle Scholar
  13. 13.
    Gupta, A.K., Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 26, 3995–4021 (2005)Google Scholar
  14. 14.
    Kim, Y.S., Kim, Y.H.: Application of ferro-cobalt magnetic fluid for oil sealing. J. Magn. Magn. Mater. 267, 105–110 (2003)ADSGoogle Scholar
  15. 15.
    Raj, K., Moskowitz, R.: A review of damping applications of ferrofluids. Trans. Magn. 16, 358–363 (2002)ADSGoogle Scholar
  16. 16.
    Schwertmann, U., Cornell, R.M.: The iron oxides: structure, properties, reactions, occurrences and uses, 2nd edn. WILEY-VCH, Weinheim (2003)Google Scholar
  17. 17.
    Schwertmann, U., Cornell, R.M.: Iron oxides in the laboratory. Wiley-VCH, Wienheim (2000)Google Scholar
  18. 18.
    Lu, A.H., Salabas, E.L., Schuth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl. 46, 1222–1244 (2007)Google Scholar
  19. 19.
    Sun, S.H., Zeng, H.: Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124, 8204–8205 (2002)Google Scholar
  20. 20.
    Wang, Z.L.: Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B. 104, 1153–1175 (2000)Google Scholar
  21. 21.
    Xie, J., Xu, C.J., Xu, Z.C., Hou, Y.L., Young, K.L., Wang, S.X., Pourmond, N., Sun, S.H.: Linking hydrophilic macromolecules to monodisperse magnetite (Fe3O4) nanoparticles via trichloro-s-triazine. Chem. Mater. 18, 5401–5403 (2006)Google Scholar
  22. 22.
    Hou, Y.L., Gao, S., Ohta, T., Kondoh, H.: Linking hydrophilic macromolecules to monodisperse magnetite (Fe3O4) nanoparticles via trichloro-s-triazine. Eur. J. Inorg. Chem. 2004, 1169–1173 (2004)Google Scholar
  23. 23.
    Qi, H.P., Chen, Q.W., Wang, M.S., Wen, M.H., Xiong, J.: Study of self-assembly of octahedral magnetite under an external magnetic field. J. Phys. Chem. C. 113, 17301–17305 (2009)Google Scholar
  24. 24.
    Yang, H.T., Ogawa, T., Hasegawa, D., Takahashi, M.: Synthesis and magnetic properties of monodisperse magnetite nanocubes. J. Appl. Phys. 103, 07d526–07d529 (2008)Google Scholar
  25. 25.
    Karthikeyan, B., Loganathan, B.: Rapid green synthetic protocol for novel trimetallic nanoparticles. J. Nanopart. 2013, 1–8 (2013)Google Scholar
  26. 26.
    Zhou, J., Ao, J., Xia, Y., Xiong, H.: Stable photoluminescent ZnO@Cd(OH)2 core–shell nanoparticles synthesized via ultrasonication-assisted sol–gel method. J. Colloid Interface Sci. 393, 80–86 (2013)ADSGoogle Scholar
  27. 27.
    Lehui, L., Kelong, A., Yukihiro, O.: Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape. Langmuir. 24, 1058–1063 (2008)Google Scholar
  28. 28.
    Satyavani, K., Gurudeeban, S., Balasubramanian, T.R.: Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. J. Nanobiotechnol. 9(43), 1–8 (2011)Google Scholar
  29. 29.
    Liang, J., Li, L., Luo, M., Wang, Y.: Fabrication of Fe3O4 octahedra by a triethanolamine-assisted hydrothermal process. Cryst. Res. Technol. 46, 95–98 (2011)Google Scholar
  30. 30.
    Alcala, M.D., Criado, J.M., Real, C.: Synthesis of nanocrystalline magnetite by mechanical alloying of iron and hematite. J. Mater. Sci. 39, 2365–2370 (2004)ADSGoogle Scholar
  31. 31.
    Deepika, H., Jacob, L., Rajender, N.N.: A greener synthesis of core (Fe, Cu)-Shell (Au, Pt, Pd, and Ag) nanocrystals using aqueous vitamin C. ACS Sustain. Chem. Eng. 1, 703–712 (2013)Google Scholar
  32. 32.
    Roy, S., Das, T.K.: Plant mediated green synthesis of silver nanoparticles-a review. Int. J. Plant Biol. Res. 3, 1044–1055 (2015)Google Scholar
  33. 33.
    O’Handly, R.C.: Modern magnetic materials: principles and applications. Wiley-VCH, Weinheim (2000)Google Scholar
  34. 34.
    Ogielski, A.T., Morgenstern, I.: Critical behavior of three-dimensional Ising spin-glass model. Phys. Rev. Lett. 54, 928–931 (1985)ADSGoogle Scholar
  35. 35.
    Saeedi, M.S., Tangestaninejad, S., Moghadam, M., Mirkhani, V., Baltork, I.M., Khosropour, A.R.: Magnetic nanoparticles supported manganese (III) tetrapyridylporphyrin catalyst via covalent interaction: a highly efficient and reusable catalyst for the oxidation of hydrocarbons. Polyhedron. 49, 158–166 (2013)Google Scholar
  36. 36.
    Zhang, H., Zhu, G.: One-step hydrothermal synthesis of magnetic Fe3O4 nanoparticles immobilized on polyamide fabric. Appl. Surf. Sci. 258, 4952–4959 (2012)ADSGoogle Scholar
  37. 37.
    Farahani, M.M., Movassagh, J., Taghavi, F., Eghbali, P., Salimi, F.: Magnetite-polyoxometalate hybrid nanomaterials: synthesis and characterization. Chem. Eng. J. 184, 342–346 (2012)Google Scholar
  38. 38.
    Neel, L.: Magnetic properties of ferrite - ferrimagnetism and antiferromagnetism. Ann. Phys. 3, 137–198 (1948)Google Scholar
  39. 39.
    Joaquin, G., Gloria, S.: The Verwey transition - a new perspective. J. Phys. Condens. Matter. 16, R145–R178 (2004)Google Scholar
  40. 40.
    Senn, M.S., Loa, I., Wright, J.P., Attfield, J.P.: Electronic orders in the Verwey structure of magnetite. Phys. Rev. B. 85, 125119–1251123 (2012)ADSGoogle Scholar
  41. 41.
    Tilaki, R.M., Iraji zad, A., Mahdavi, S.M.: Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media. Appl. Phys. A Mater. Sci. Process. 84, 215–219 (2006)ADSGoogle Scholar
  42. 42.
    Rao, C.N.R., Muller, A., Cheetham, A.K.: The chemistry of nanomaterials. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2004)Google Scholar
  43. 43.
    Tresintsi, S., Simeonidis, K., Vourlias, G., Stavropoulos, G., Mitrakas, M.: Kilogram-scale synthesis of iron oxy-hydroxides with improved arsenic removal capacity: study of Fe(II) oxidation-precipitation parameters. Water Res. 46, 5255–5267 (2012)Google Scholar
  44. 44.
    Simeonidis, K., Kaprara, E., Samaras, T., Angelakeris, M., Pliatsikas, N., Vourlias, G., Mitrakas, M., Andritsos, N.: Optimizing magnetic nanoparticles for drinking water technology: the case of Cr (VI). Sci. Total Environ. 535, 61–68 (2015)ADSGoogle Scholar
  45. 45.
    Pinakidoua, F., Katsikini, M., Simeonidis, K., Kapraraa, E., Paloura, E.C., Mitrakas, M.: On the passivation mechanism of Fe3O4 nanoparticles during Cr (VI) removal from water: a XAFS study. Appl. Surf. Sci. 360, 1080–1086 (2016)ADSGoogle Scholar
  46. 46.
    Bhunia, P., Kim, G., Baik, C., Lee, H.: A strategically designed porous iron-iron oxide matrix on graphene for heavy metal adsorption. Chem. Commun. 48, 9888–9890 (2012)Google Scholar
  47. 47.
    Mi, F., Chen, X., Ma, Y., Yin, S., Yuan, F., Zhang, H.: Facile synthesis of hierarchical core-shell Fe3O4@MgAl-LDH@Au as magnetically recyclable catalysts for catalytic oxidation of alcohols. Chem. Commun. 47, 12804–12806 (2011)Google Scholar
  48. 48.
    Prasad, C., Yuvaraja, G., Venkateswarlu, P.: Biogenic synthesis of Fe3O4 magnetic nanoparticles using Pisum sativum peels extract and its effect on magnetic and methyl orange dye degradation studies. J. Magn. Magn. Mater. 424, 376–381 (2017)ADSGoogle Scholar
  49. 49.
    Cheera, P., Karlapudi, S., Sellola, G., Ponneri, V.: A facile green synthesis of spherical Fe3O4 magnetic nanoparticles and their effect on degradation of methylene blue in aqueous solution. J. Mol. Liq. 221, 993–998 (2016)Google Scholar
  50. 50.
    Lua, T., Wanga, J., Yina, J., Wanga, A., Wanga, X., Zhanga, T.: Surfactant effects on the microstructures of Fe3O4 nanoparticles synthesized by microemulsion method. Colloids Surf. A Physicochem. Eng. Asp. 436, 675–683 (2013)Google Scholar
  51. 51.
    Yong, Y., Bai, Y., Li, Y., Lin, L., Cui, Y., Xia, C.: Preparation and application of polymer-grafted magnetic nanoparticles for lipase immobilization. J. Magn. Magn. Mater. 320, 2350–2355 (2008)ADSGoogle Scholar
  52. 52.
    Cai, Y., Shen, Y., Xie, A., Li, S., Wang, X.: Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles. J. Magn. Magn. Mater. 322, 2938–2943 (2010)ADSGoogle Scholar
  53. 53.
    Aslibeiki, B., Kameli, P., Manouchehri, I., Salamati, H.: Strongly interacting superspins in Fe3O4 nanoparticles. Curr. Appl. Phys. 12, 812–816 (2012)ADSGoogle Scholar
  54. 54.
    Sun, J., Lin, C.: Superparamagnetic POT/ Fe3O4 nanoparticle composites with supported Au nanoparticles as recyclable high-performance nanocatalysts. Mater. Today Chem. 5(43–51), (2017)Google Scholar
  55. 55.
    Silva, V.A.J., Andrade, P.L., Silva, M.P.C., Bustamante, A., De Los Santos Valladares, L., Albino Aguiar, J.: Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. J. Magn. Magn. Mater. 343, 138–143 (2013)ADSGoogle Scholar
  56. 56.
    Yan, Z., Yuan, J., Zhu, G., Zou, Y., Chen, C., Yang, S., Yao, S.: A new strategy based on cholesterol-functionalized iron oxide magnetic nanoparticles for determination of polycyclic aromatic hydrocarbons by high-performance liquid chromatography with cholesterol column. Anal. Chim. Acta. 780, 28–35 (2013)Google Scholar
  57. 57.
    Shete, P.B., Patil, R.M., Tiwale, B.M., Pawar, S.H.: Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications. J. Magn. Magn. Mater. 377, 406–410 (2015)ADSGoogle Scholar
  58. 58.
    Cevik, E., Senel, M., Baykal, A., Fatih Abasiyanik, M.: Poly (glycidylmethacrylate-co-vinyl ferrocene)-grafted iron oxide nanoparticles as an electron transfer mediator for amperometric phenol detection. Curr. Appl. Phys. 13, 1611–1619 (2013)ADSGoogle Scholar
  59. 59.
    Ebrahimi Fard, A., Zarepour, A., Zarrabi, A., Shanei, A., Salehi, H.: Synergistic effect of the combination of triethylene-glycol modified Fe3O4 nanoparticles and ultrasound wave on MCF-7 cells. J. Magn. Magn. Mater. 394, 44–49 (2015)ADSGoogle Scholar
  60. 60.
    Aghazadeh, M., Karimzadeh, I., Ganjali, M.R.: Ethylenediaminetetraacetic acid capped superparamagnetic iron oxide (Fe3O4) nanoparticles: a novel preparation method and characterization. J. Magn. Magn. Mater. 439, 312–319 (2017)ADSGoogle Scholar
  61. 61.
    Dhak, P., Kim, M.-K., Lee, J.H., Kim, M., Kim, S.-K.: Linear-chain assemblies of iron oxide nanoparticles. J. Magn. Magn. Mater. 433, 47–52 (2017)ADSGoogle Scholar
  62. 62.
    Bajaj, B., Malhotra, B.D., Cho, S.: Preparation and characterization of bio-functionalized iron oxide nanoparticles for biomedical application. Thin Solid Films. 519, 1219–1223 (2010)ADSGoogle Scholar
  63. 63.
    Zhu, J., He, J., Du, X., Lu, R., Huang, L., Ge, X.: A facile and flexible process of β-cyclodextrin grafted on Fe3O4 magnetic nanoparticles and host–guest inclusion studies. Appl. Surf. Sci. 257, 9056–9062 (2011)ADSGoogle Scholar
  64. 64.
    Xu, Y., Zhuang, L., Lin, H., Shen, H., Li, J.W.: Preparation and characterization of polyacrylic acid coated magnetite nanoparticles functionalized with amino acids. Thin Solid Films. 544, 368–373 (2013)ADSGoogle Scholar
  65. 65.
    Dutta, B., Shetake, N.G., Barick, B.K., Barick, K.C., Pandey, B.N., Priyadarsini, K.I., Hassan, P.A.: pH sensitive surfactant-stabilized Fe3O4 magnetic nanocarriers for dual drug delivery. Colloids Surf. B: Biointerfaces. 162, 163–171 (2018)Google Scholar
  66. 66.
    Dong, Y., Yang, Z., Sheng, Q., Zheng, J.: Solvothermal synthesis of Ag@Fe3O4 nanosphere and its application as hydrazine sensor. Colloids Surf. A Physicochem. Eng. Asp. 538, 371–377 (2018)Google Scholar
  67. 67.
    Safari, J., Javadian, L.: Ultrasound assisted the green synthesis of 2-amino-4H-chromene derivatives catalyzed by Fe3O4-functionalized nanoparticles with chitosan as a novel and reusable magnetic catalyst. Ultrason. Sonochem. 22, 341–348 (2015)Google Scholar
  68. 68.
    Ma, M., Zhang, Y., Guo, Z., Gu, N.: Facile synthesis of ultrathin magnetic iron oxide nanoplates by Schikorr reaction. Nanoscale Res. Lett. 8(16), 1–7 (2013)ADSGoogle Scholar
  69. 69.
    Rahimi, R., Maleki, A., Maleki, S.: Synthesis and characterization of a new magnetic bromochromate hybrid nanomaterial with triethylamine surface modified iron oxide nanoparticles. Chin. Chem. Lett. 25, 919–922 (2014)Google Scholar
  70. 70.
    Tang, H., Zhang, C., Chang, K., Shangguan, E., Li, B., Chang, Z.: Synthesis of NiS coated Fe3O4 nanoparticles as high-performance positive materials for alkaline nickel-iron rechargeable batteries. Int. J. Hydrog. Energy. 42, 24939–24947 (2017)Google Scholar
  71. 71.
    Lesbayev, A.B., Elouadi, B., Lesbayev, B.T., Manakov, S.M., Smagulova, G.T., Prikhodko, N.G.: Obtaining of magnetic polymeric fibers with additives of magnetite nanoparticle. Procedia Manuf. 12, 28–32 (2017)Google Scholar
  72. 72.
    An, P., Zuo, F., Yuan Peng, W., Zhang, J.H., Zheng, Z.H., Ding, X.B., Xing Peng, Y.: Fast synthesis of dopamine-coated Fe3O4 nanoparticles through ligand-exchange method. Chin. Chem. Lett. 23, 1099–1102 (2012)Google Scholar
  73. 73.
    Atacan, K., Ozacar, M.: Characterization and immobilization of trypsin on tannic acid modified Fe3O4 nanoparticles. Colloids Surf. B: Biointerfaces. 128, 227–236 (2015)Google Scholar
  74. 74.
    Han, C., Zhu, D., Wu, H., Li, Y., Cheng, L., Hu, K.: TEA controllable preparation of magnetite nanoparticles (Fe3O4 NPs) with excellent magnetic properties. J. Magn. Magn. Mater. 408, 213–216 (2016)ADSGoogle Scholar
  75. 75.
    Rezayan, A.H., Mousavi, M., Kheirjou, S., Amoabediny, G., Ardestani, M.S., Mohammadnejad, J.: Monodisperse magnetite (Fe3O4) nanoparticles modified with water soluble polymers for the diagnosis of breast cancer by MRI method. J. Magn. Magn. Mater. 420, 210–217 (2016)ADSGoogle Scholar
  76. 76.
    Lin, J., Wen, Q., Chen, S., Le, X., Zhou, X., Huang, L.: Synthesis of amine-functionalized Fe3O4@C nanoparticles for laccase immobilization. Int. J. Biol. Macromol. 96, 377–383 (2017)Google Scholar
  77. 77.
    Liu, Y., Bai, J., Duan, H., Yin, X.: Static magnetic field-assisted synthesis of Fe3O4 nanoparticles and their adsorption of Mn (II) in aqueous solution. Chin. J. Chem. Eng. 25, 32–36 (2017)Google Scholar
  78. 78.
    Hernandez-Hernandez, A.A., Alvarez-Romero, G.A., Castaneda-Ovando, A., Mendoza-Tolentino, Y., Contreras-Lopez, E., Galan-Vidal, C.A., Paez-Hernandez, M.E.: Optimization of microwave-solvothermal synthesis of Fe3O4 nanoparticles. Coating, modification, and characterization. Mater. Chem. Phys. 205, 113–119 (2018)Google Scholar
  79. 79.
    Atacana, K., Cakiroglu, B., Ozacar, M.: Covalent immobilization of trypsin onto modified magnetite nanoparticles and its application for casein digestion. Int. J. Biol. Macromol. 97, 148–155 (2017)Google Scholar
  80. 80.
    Khoee, S., Saadatinia, A., Bafkary, R.: Ultrasound-assisted synthesis of pH-responsive nanovector based on PEG/ chitosan coated magnetite nanoparticles for 5-FU delivery. Ultrason. Sonochem. 39, 144–152 (2017)Google Scholar
  81. 81.
    Xing, Y., Jin, Y.-Y., Si, J.-C., Peng, M.-L., Wang, X.-F., Chen, C., Cui, Y.-L.: Controllable synthesis and characterization of Fe3O4/Au composite nanoparticles. J. Magn. Magn. Mater. 380, 150–156 (2015)ADSGoogle Scholar
  82. 82.
    Zhu, J., He, J., Du, X., Lu, R., Huang, L., Ge, X.: A facile and flexible process of cyclodextrin grafted on Fe3O4 magnetic nanoparticles and host-guest inclusion studies. Appl. Surf. Sci. 257, 9056–9062 (2011)ADSGoogle Scholar
  83. 83.
    Ghosh, R., Pradhan, L., Devi, Y.P., Meena, S.S., Tewari, R., Kumar, A., Sharma, S., Gajbhiye, N.S., Vatsa, R.K., Pandey, B.N., Ningthoujam, R.S.: Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia. J. Mater. Chem. 21, 13388–13398 (2011)Google Scholar
  84. 84.
    Dincer, C.A., Yildiz, N., Aydogan, N., Calimli, A.: A comparative study of Fe3O4 nanoparticles modified with different silane compounds. Appl. Surf. Sci. 318, 297–304 (2014)ADSGoogle Scholar
  85. 85.
    Rahimi, R., Maleki, A., Maleki, S.: Preparation of magnetic fluorochromate hybrid nanomaterials with triphenylphosphine surface modified iron oxide nanoparticles and their characterization. J. Magn. Magn. Mater. 355, 300–305 (2014)ADSGoogle Scholar
  86. 86.
    Izadi, M., Shahrabib, T., Ramezanzadeh, B.: Synthesis and characterization of an advanced layer-by-layer assembled Fe3O4/polyaniline nanoreservoir filled with Nettle extract as a green corrosion protective system. J. Ind. Eng. Chem. 57, 263–274 (2018)Google Scholar
  87. 87.
    Atacan, K., Cakiroglu, B., Ozacar, M.: Improvement of the stability and activity of immobilized trypsin on modified Fe3O4 magnetic nanoparticles for hydrolysis of bovine serum albumin and its application in the bovine milk. Food Chem. 212, 460–468 (2016)Google Scholar
  88. 88.
    Thomas, T., Kanotha, B.P., Nijas, C.M., Joy, P.A., Joseph, J.M., Kuthirummal, N., Thachil, E.T.: Preparation and characterization of flexible ferromagnetic nanocomposites for microwave applications. Mater. Sci. Eng. B. 200, 40–49 (2015)Google Scholar
  89. 89.
    Fu, F., Wang, Q.: Removal of heavy metal ions from wastewaters: a review. J. Environ. Manag. 92(3), 407–418 (2011)Google Scholar
  90. 90.
    Musyoka, S.M., Ngila, J.C., Moodley, B., Petrik, L., Kindness, A.: Synthesis, characterization, and adsorption kinetic studies of ethylenediamine modified cellulose for removal of Cd and Pb. Anal. Lett. 44(11), 1925–1936 (2011)Google Scholar
  91. 91.
    Hutchinson, T.C., Meema, K.M.: In: Hutton, M. (ed.) Lead, mercury, cadmium and arsenic in the environment. Wiley, Hoboken (1987)Google Scholar
  92. 92.
    Ge, F., Li, M.M., Ye, H., Zhao, B.X.: Effective removal of heavy metal ions Cd2+ , Zn2+ , Pb2+ , Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J. Hazard. Mater. 211, 366–372 (2012)Google Scholar
  93. 93.
    Zhao, Y.G., Chen, X.H., Pan, S.D., Zhu, H., Shen, H.Y., Jin, M.C.: Self-assembly of a surface bisphenol A-imprinted core–shell nanoring amino-functionalized superparamagnetic polymer. J. Mater. Chem. A. 1(38), 11648–11658 (2013)Google Scholar
  94. 94.
    Hasanzadeh, R., Moghadam, P.N., Bahri-Laleh, N., Sillanpää, M.: Effective removal of toxic metal ions from aqueous solutions: 2-bifunctional magnetic nanocomposite base on novel reactive PGMA-MAn copolymer@Fe3O4nanoparticle. J. Colloid Interface Sci. 490, 727–746 (2017)ADSGoogle Scholar
  95. 95.
    Jeong, U., Teng, X., Wang, Y., Yang, H., Xia, Y.: Superparamagnetic colloids: controlled synthesis and niche applications. Adv. Mater. 19, 33–60 (2007)Google Scholar
  96. 96.
    Krizzova, J., Spanova, A., Rittich, B., Horak, D.: Magnetic hydrophilic methacrylate based polymer microspheres for genomic DNA isolation. J. Chromatogr. A. 1064, 247–253 (2005)Google Scholar
  97. 97.
    Fan, Q.-L., Neoh, K.-G., Kang, E.-T., Shuter, B., Wang, S.-C.: Solvent-free atom transfer radical polymerization for the preparation of poly(poly(ethyleneglycol) monomethacrylate)-grafted Fe3O4 nanoparticles: synthesis, characterization and cellular uptake. Biomaterials. 28, 5426–5436 (2007)Google Scholar
  98. 98.
    Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)Google Scholar
  99. 99.
    Sharma, R.K., Agrawal, M., Marshall, F.: Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol. Environ. Saf. 66, 258–266 (2007)Google Scholar
  100. 100.
    Park, S.Y., Yoon, J.H., Hong, C.S., Souane, R., Kim, J.S., Matthews, S.E., Vicens, J.: A pyrenyl-appended triazole-based calix[4] arene as a fluorescent sensor for Cd2+ and Zn2+. J. Org. Chem. 73, 8212–8218 (2008)Google Scholar
  101. 101.
    Plum, L.M., Rink, L., Haase, H.: The essential toxin: impact of zinc on human health. Int. J. Environ. Res. Public Health. 7, 1342–1365 (2010)Google Scholar
  102. 102.
    Xu, Z., Baek, K.H., Kim, H.N., Cui, J., Qian, X., Spring, D.R., Shin, I., Yoon, J.: Zn2+ triggered amide tautomerization produces a highly Zn2+ selective cell-permeable, and ratiometric fluorescent sensor. J. Am. Chem. Soc. 132, 601–610 (2009)Google Scholar
  103. 103.
    Xue, L., Liu, C., Jiang, H.: Highly sensitive and selective fluorescent sensor for distinguishing cadmium from zinc ions in aqueous media. Org. Lett. 11, 1655–1658 (2009)Google Scholar
  104. 104.
    Kim, K.T., Shin, A., Yoon, J.A., Choi, Y., Lee, M.H., Jung, J.H., Park, J.: Sensors Actuators B. 243, 1034–1041 (2017)Google Scholar
  105. 105.
    Wang, J., Zheng, S., Shao, Y., Liu, J., Xu, Z., Zhu, D.: Amino-functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J. Colloid Interface Sci. 349, 293–299 (2010)ADSGoogle Scholar
  106. 106.
    Huang, S.H., Chen, D.H.: Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J. Hazard. Mater. 163, 174–179 (2009)Google Scholar
  107. 107.
    Jin, S., Park, B.C., Ham, W.S., Pan, L., Young Keun Kim, A.: Physicochemical and engineering aspects. Colloids Surf. A Physicochem. Eng. Asp. 531(133–140), (2017)Google Scholar
  108. 108.
    Hu, J., Shipley, H.J.: Evaluation of desorption of Pb(II), Cu(II) and Zn(II) from titanium dioxide nanoparticles. Sci. Total Environ. 431, 209–220 (2012)ADSGoogle Scholar
  109. 109.
    Ngah, W.S.W., Hanaflah, M.A.K.M.: Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour. Technol. 99, 3935–3948 (2008)Google Scholar
  110. 110.
    Khattri, S.D., Singh, M.K.: Removal of malachite green from dye wastewater using neem sawdust by adsorption. J. Hazard. Mater. 167, 1089–1094 (2009)Google Scholar
  111. 111.
    Mittal, A., Kaur, D., Mittal, J.: Batch and bulk removal of a triarylmethane dye, fast green FCF, from wastewater by adsorption over waste materials. J. Hazard. Mater. 163, 568–577 (2009)Google Scholar
  112. 112.
    Azad, F.N., Ghaedi, M., Dashtian, K., Hajati, S., Pezeshkpour, V.: Ultrasonically assisted hydrothermal synthesis of activated carbon–HKUST-1-MOF hybrid for efficient simultaneous ultrasound-assisted removal of ternary organic dyes and antibacterial investigation: Taguchi optimization. Ultrason. Sonochem. 31, 383–393 (2016)Google Scholar
  113. 113.
    Baracca, A., Sgarbi, G., Solaini, G., Lenaz, G.: Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F 0 during ATP synthesis. Biochim. Biophys. Acta. 1606, 137–146 (2003)Google Scholar
  114. 114.
    Bagheri, S., Aghaei, H., Ghaedi, M., Asfaram, A., Monajemi, M., Bazrafshan, A.A.: Synthesis of nanocomposites of iron oxide/gold (Fe3O4/Au) loaded on activated carbon and their application in water treatment by using sonochemistry: optimization study. Ultrason. Sonochem. 41, 279–287 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryBharathiar UniversityCoimbatoreIndia

Personalised recommendations