Interface-Induced and Interface-Enhanced Superconductivity

  • C. W. ChuEmail author
  • L. Z. Deng
  • M. Gooch
  • S. Y. Huyan
  • B. Lv
  • Z. Wu
Original Paper


Among the various theoretical mechanisms proposed to reach a higher Tc, the interface mechanism in different forms has been the one most explored, and it provides continual inspiration and hope for realizing the ultimate goal for researchers in the superconductivity field—room-temperature superconductivity. Difficulties do exist, as most of the materials proposed to exhibit the interfacial mechanism are artificially formed heterostructures and are by nature delicate and easily disturbed by strain and change in the stoichiometry at the interface. The discoveries of superconductivity in naturally assembled single crystals of rare earth (R)-doped CaFe2As2 (Ca122) with a Tc up to 49 K and undoped CaFe2As2 with a Tc up to 25 K have opened an alternate route to tackle the problem. The experimental observation has provided the most direct evidence for interface-induced superconductivity in Ca122 to date and possibly in R-doped Ca122. Given the fact that neither chemical doping nor the application of physical pressure has ever induced a Tc higher than 40 K in bulk FeSe, the reports of Tc up to 45–109 K in FeSe/STO thin films demonstrate that FeSe/STO is an ideal system in which to explore interface-enhanced superconductivity. Here we review the above three specific examples of our effort toward superconductors of higher Tc to demonstrate that the interface mechanism may be a promising paradigm to achieve higher Tc.


Interface High temperature superconductivity Mixed phase CaFe2As2 FeSe 



The work in Houston is supported in part by the U.S. Air Force Office of Scientific Research Grant FA9550-15-1-0236, the T. L. L. Temple Foundation, the John J. and Rebecca Moores Endowment, and the State of Texas through the Texas Center for Superconductivity at the University of Houston.


  1. 1.
    Bednorz, J.G., Müller, K.A.: Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B. 64, 189–193 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    Chu, C.W., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J.: Superconductivity at 52.5 K in the lanthanum-barium-copper-oxide system. Science. 235, 567–569 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    Chu, C.W.: A possible path to RTS. AAPPS Bull. 18(4), 9–21 (2008)Google Scholar
  4. 4.
    Chu, C.W., Deng, L.Z., Lv, B.: Hole-doped cuprate high temperature superconductors. Physica C. 514, 290–313 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y.Q., Chu, C.W.: Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58, 908–910 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    Kleiner, R., Steinmeyer, F., Kunkel, G., Müller, P.: Intrinsic Josephson effects in Bi2Sr2CaCu2O8 single crystals. Phys. Rev. Lett. 68, 2394–2397 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    Little, W.A.: Possibility of synthesizing an organic superconductor. Phys. Rev. 164, A1416–A1424 (1964)CrossRefGoogle Scholar
  8. 8.
    Wang, R.S., Gao, Y., Huang, Z.B., Chen, X.J.: Superconductivity above 120 kelvin in a chain link molecule. arXiv:1703.06641 [cond-mat.supr-con] (2017)Google Scholar
  9. 9.
    Ginzburg, V.L.: Concerning surface superconductivity. JETP. 47, 2318–2320 (1964)Google Scholar
  10. 10.
    Ginzburg, V.L.: The problem of high-temperature superconductivity, II. Sov. Phys. Usp. 13, 335–352 (1970)ADSCrossRefGoogle Scholar
  11. 11.
    Allender, D., Bray, J., Bardeen, J.: Model for an exciton mechanism of superconductivity. Phys. Rev. B. 7, 1020–1029 (1973)ADSCrossRefGoogle Scholar
  12. 12.
    Pereiro, J., Petrovic, A., Panagopoulos, C., Božović, I.: Interface superconductivity: history, development and prospects. Phys. Express. 1(4), 208–241 (2011)Google Scholar
  13. 13.
    Xiao, H., Hu, T., Dioguardi, A.P., apRoberts-Warren, N., Shockley, A.C., Crocker, J., Nisson, D.M., Viskadourakis, Z., Tee, X., Radulov, I., Almasan, C.C., Curro, N.J., Panagopoulos, C.: Evidence for filamentary superconductivity nucleated at antiphase domain walls in antiferromagnetic CaFe2As2. Phys. Rev. B. 85, 024530 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Saha, S.R., Butch, N.P., Kirshenbaum, K., Paglione, J., Zavalij, P.Y.: Superconducting and ferromagnetic phases induced by lattice distortions in stoichiometric SrFe2As2 single crystals. Phys. Rev. Lett. 103, 037005 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Kim, J.S., Blasius, T.D., Kim, E.G., Stewart, G.R.: Superconductivity in undoped single crystals of BaFe2As2: field and current dependence. J. Phys.: Condens. Matter. 21, 342201 (2009)Google Scholar
  16. 16.
    Lv, B., Deng, L.Z., Gooch, M., Wei, F.Y., Sun, Y.Y., Meen, J.K., Xue, Y.Y., Lorenz, B., Chu, C.W.: Unusual superconducting state at 49 K in electron-doped CaFe2As2 at ambient pressure. Proc. Natl. Acad. Sci. U.S.A. 108, 15705–15709 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Saha, S.R., Butch, N.P., Drye, T., Magill, J., Ziemak, S., Kirshenbaum, K., Zavalij, P.Y., Lynn, J.W., Paglione, J.: Structural collapse and superconductivity in rare-earth-doped CaFe2As2. Phys. Rev. B. 85, 024525 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    McMillan, W.L.: Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331–344 (1968)ADSCrossRefGoogle Scholar
  19. 19.
    Wei, F.Y., Lv, B., Deng, L.Z., Meen, J.K., Xue, Y.Y., Chu, C.W.: The unusually high Tc in rare-earth-doped single crystalline CaFe2As2. Philos. Mag. 94, 2562–2570 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Deng, L.Z., Lv, B., Zhao, K., Wei, F.Y., Xue, Y.Y., Wu, Z., Chu, C.W.: Evidence for defect-induced superconductivity up to 49 K in (Ca1−xRx)Fe2As2. Phys. Rev. B. 93, 054513 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Ren, Z.A., Zhao, Z.X.: Research and prospects of iron-based superconductors. Adv. Mater. 21, 4584–4592 (2009)CrossRefGoogle Scholar
  22. 22.
    Kreyssig, A., Green, M.A., Lee, Y., Samolyuk, G.D., Zajdel, P., Lynn, J.W., Bud’ko, S.L., Torikachvili, M.S., Ni, N., Nandi, S., Leão, J.B., Poulton, S.J., Argyriou, D.N., Harmon, B.N., McQueeney, R.J., Canfield, P.C., Goldman, A.I.: Pressure-induced volume-collapsed tetragonal phase of CaFe2As2 as seen via neutron scattering. Phys. Rev. B. 78, 184517 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Saparov, B., Cantoni, C., Pan, M., Hogan, T.C., Ratcliff II, W., Wilson, S.D., Fritsch, K., Tachibana, M., Gaulin, B.D., Sefat, A.S.: Complex structures of different CaFe2As2 samples. Sci. Rep. 4, 4120 (2014)CrossRefGoogle Scholar
  24. 24.
    Zeljkovic, I., Huang, D., Song, C.L., Lv, B., Chu, C.W., Hoffman, J.E.: Nanoscale surface element identification and dopant homogeneity in the high-Tc superconductor PrxCa1−xFe2As2. Phys. Rev. B. 87, 201108(R) (2013)Google Scholar
  25. 25.
    Torikachvili, M.S., Bud’ko, S.L., Ni, N., Canfield, P.C.: Pressure induced superconductivity in CaFe2As2. Phys. Rev. Lett. 101, 057006 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Zheng, Y., Wang, Y., Lv, B., Chu, C.W., Lortz, R.: Thermodynamic evidence for pressure-induced bulk superconductivity in the Fe–As pnictide superconductor CaFe2As2. New J. Phys. 14, 053034 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Ran, S., Bud’ko, S.L., Pratt, D.K., Kreyssig, A., Kim, M.G., Kramer, M.J., Ryan, D.H., Rowan-Weetaluktuk, W.N., Furukawa, Y., Roy, B., Goldman, A.I., Canfield, P.C.: Stabilization of an ambient-pressure collapsed tetragonal phase in CaFe2As2 and tuning of the orthorhombic-antiferromagnetic transition temperature by over 70 K via control of nanoscale precipitates. Phys. Rev. B. 83, 144517 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    Zhao, K., Lv, B., Deng, L.Z., Huyan, S.Y., Xue, Y.Y., Chu, C.W.: Interface-induced superconductivity at ∼25 K at ambient pressure in undoped CaFe2As2 single crystals. Proc. Natl. Acad. Sci. U.S.A. 113, 12968–12973 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Deng, L.Z., Huyan, S.Y., Wu, Z., Zhao, K., Lv, B., Gooch, M., Yuan, H.M., Chu, C.W.: Possible interface superconductivity in rare-earth-doped CaFe2As2 and undoped CaFe2As2. Quantum Stud.: Math. Found. 5, 103–109 (2018)CrossRefGoogle Scholar
  30. 30.
    Wang, Q.Y., Li, Z., Zhang, W.H., Zhang, Z.C., Zhang, J.S., Li, W., Ding, H., Ou, Y.B., Deng, P., Chang, K., Wen, J., Song, C.L., He, K., Jia, J.F., Ji, S.H., Wang, Y.Y., Wang, L.L., Chen, X., Ma, X.C., Xue, Q.K.: Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3. Chin. Phys. Lett. 29, 037402 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    He, S.L., He, J.F., Zhang, W.H., Zhao, L., Liu, D.F., Liu, X., Mou, D.X., Ou, Y.B., Wang, Q.Y., Li, Z., Wang, L.L., Peng, Y.Y., Liu, Y., Chen, C.Y., Yu, L., Liu, G.D., Dong, X.L., Zhang, J., Chen, C.T., Xu, Z.Y., Chen, X., Ma, X.C., Xue, Q.K., Zhou, X.J.: Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat. Mater. 12, 605–610 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    Tan, S.Y., Zhang, Y., Xia, M., Ye, Z.R., Chen, F., Xie, X., Peng, R., Xu, D.F., Fan, Q., Xu, H.C., Jiang, J., Zhang, T., Lai, X.C., Xiang, T., Hu, J.P., Xie, B.P., Feng, D.L.: Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. Nat. Mater. 12, 634–640 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Zhang, W.H., Sun, Y., Zhang, J.S., Li, F.S., Guo, M.H., Zhao, Y.F., Zhang, H.M., Peng, J.P., Xing, Y., Wang, H.C., Fujita, T., Hirata, A., Li, Z., Ding, H., Tang, C.J., Wang, M., Wang, Q.Y., He, K., Ji, S.H., Chen, X., Wang, J.F., Xia, Z.C., Li, L., Wang, Y.Y., Wang, J., Wang, L.L., Chen, M.W., Xue, Q.K., Ma, X.C.: Direct observation of high-temperature superconductivity in one-unit-cell FeSe films. Chin. Phys. Lett. 31, 017401 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Sun, Y., Zhang, W.H., Xing, Y., Li, F.S., Zhao, Y.F., Xia, Z.C., Wang, L.L., Ma, X.C., Xue, Q.K., Wang, J.: High temperature superconducting FeSe films on SrTiO3 substrates. Sci. Rep. 4, 6040 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    Lv, B., Deng, L.Z., Wu, Z., Wei, F.Y., Zhao, K., Meen, J.K., Xue, Y.Y., Wang, L.L., Ma, X.C., Xue, Q.K., Chu, C.W.: Why is the Tc so high in Fe-based pnictide and chalcogenide superconductors? MRS Proc. 1684, mrss14-1684-t04-01 (2014)Google Scholar
  36. 36.
    Liu, X., Liu, D.F., Zhang, W.H., He, J.F., Zhao, L., He, S.L., Mou, D.X., Li, F.S., Tang, C.J., Li, Z., Wang, L.L., Peng, Y.Y., Liu, Y., Chen, C.Y., Yu, L., Liu, G.D., Dong, X.L., Zhang, J., Chen, C.T., Xu, Z.Y., Chen, X., Ma, X.C., Xue, Q.K., Zhou, X.J.: Dichotomy of the electronic structure and superconductivity between single-layer and double-layer FeSe/SrTiO3 films. Nat. Commun. 5, 5047 (2014)CrossRefGoogle Scholar
  37. 37.
    Lee, J.J., Schmitt, F.T., Moore, R.G., Johnston, S., Cui, Y.T., Li, W., Yi, M., Liu, Z.K., Hashimoto, M., Zhang, Y., Lu, D.H., Devereaux, T.P., Lee, D.H., Shen, Z.X.: Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3. Nature. 515, 245–248 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    Ge, J.F., Liu, Z.L., Liu, C.H., Gao, C.L., Qian, D., Xue, Q.K., Liu, Y., Jia, J.F.: Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nat. Mater. 14, 285–289 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    Hsu, F.C., Luo, J.Y., Yeh, K.W., Chen, T.K., Huang, T.W., Wu, P.M., Lee, Y.C., Huang, Y.L., Chu, Y.Y., Yan, D.C., Wu, M.K.: Superconductivity in the PbO-type structure α-FeSe. Proc. Natl. Acad. Sci. U.S.A. 105, 14262–14264 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    Nabeshima, F., Imai, Y., Hanawa, M., Tsukuda, I., Maeda, A.: Enhancement of the superconducting transition temperature in FeSe epitaxial thin films by anisotropic compression. Appl. Phys. Lett. 103, 172602 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    Deng, L.Z., Lv, B., Wu, Z., Xue, Y.Y., Zhang, W.H., Li, F.S., Wang, L.L., Ma, X.C., Xue, Q.K., Chu, C.W.: Meissner and mesoscopic superconducting states in 1–4 unit-cell FeSe films. Phys. Rev. B. 90, 214513 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • C. W. Chu
    • 1
    Email author
  • L. Z. Deng
    • 1
  • M. Gooch
    • 1
  • S. Y. Huyan
    • 1
  • B. Lv
    • 1
  • Z. Wu
    • 1
  1. 1.Texas Center for Superconductivity and Department of PhysicsUniversity of HoustonHoustonUSA

Personalised recommendations