Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 2, pp 247–252 | Cite as

Characterization of Fe3O4/γ-Fe2O3@ SiO2 Core-Shell Structure Composite Magnetic Fluid by Microemulsion Method

  • Huiping ShaoEmail author
  • Yuling Zhou
  • Jiangcong Qi
  • Pei Hu
  • Jianzhuang He
Original Research
  • 69 Downloads

Abstract

Fe3O4/γ-Fe2O3@SiO2 composite magnetic fluids were prepared successfully by microemulsion method in this study. Fe3O4 magnetic nanoparticles (Nps) were successfully converted to Fe3O4/γ-Fe2O3 magnetic Nps by low-temperature low-vacuum oxidation method (LTLV oxidation method), and then coated with silica by the modified Stöber method. The core-shell structure composite magnetic Nps were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), and transmission electron microscopy (TEM). The results show that the size of Fe3O4/γ-Fe2O3 particles was about 13 nm and that of SiO2 coating was about 3 nm, and the saturation magnetization of Fe3O4/γ-Fe2O3 and Fe3O4/γ-Fe2O3@SiO2 Nps was 59.12 A m2/kg and 35.84 A m2/kg, respectively. And the saturation magnetization of Fe3O4/γ-Fe2O3@SiO2 magnetic fluid was 22.91 A m2/kg.

Keywords

Fe3O4/γ-Fe2O3 SiO2 Magnetic fluid Microemulsion 

Notes

Funding Information

This work was financially supported by the Key Research and Development Projects of People’s Liberation Army (No. BWS17J036).

References

  1. 1.
    Iskandar, F., Asbahri, A., Dwinanto, E., et al.: Synthesis of Fe3O4 Nps using the co-precipitation method and its development into nanofluids as a catalyst in aquathermolysis reactions. Adv. Mater. Res. 1112, 205–208 (2015).  https://doi.org/10.4028/www.scientific.net/AMR.1112.205 CrossRefGoogle Scholar
  2. 2.
    Zaitsev, V.S., Filimonov, D.S., Presnyakov, I.A., Gambino, R.J., Chu, B.: Physical and chemical properties of magnetite and magnetite-polymer Nps and their colloidal dispersions. J. Colloid Interface Sci. 212, 49–57 (1999).  https://doi.org/10.1006/jcis.1998.5993 ADSCrossRefGoogle Scholar
  3. 3.
    Bolto, B.A.: Magnetic particle technology for wastewater treatment. Waste Manag. 10, 11–21 (1990).  https://doi.org/10.1016/0956-053X(90)90065-S CrossRefGoogle Scholar
  4. 4.
    Deng, Y., Qi, D., Deng, C., Zhang, X., Zhao, D.: Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 130, 28–29 (2008).  https://doi.org/10.1021/ja0777584 CrossRefGoogle Scholar
  5. 5.
    Rozada, F., Otero, M., Morán, A., et al.: Adsorption of heavy metals onto sewage sludge-derived materials. Bioresour. Technol. 99, 6332–6338 (2008).  https://doi.org/10.1016/j.biortech.2007.12.015 CrossRefGoogle Scholar
  6. 6.
    Mayo, J.T., Yavuz, C., Yean, S., Cong, L., Shiple, H., Yu, W., Falkner, J., Kan, A., Tomson, M., Colvin, V.L.: The effect of nanocrystalline magnetite size on arsenic removal. Sci. Technol. Adv. Mater. 8, 71–75 (2007).  https://doi.org/10.1016/j.stam.2006.10.005 CrossRefGoogle Scholar
  7. 7.
    Sun, S., Zeng, H.: Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124, 8204–8205 (2002).  https://doi.org/10.1021/ja026501x CrossRefGoogle Scholar
  8. 8.
    Wan, S., Huang, J., Yan, H., Liu, K.: Size-controlled preparation of magnetite Nps in the presence of graft copolymers. J. Mater. Chem. 16, 298–303 (2006).  https://doi.org/10.1039/B512605C CrossRefGoogle Scholar
  9. 9.
    Barbosaa, I.A., Filhoa, P.C.d.S., da Silvaa, D.L., et al.: Metalloporphyrins immobilized in Fe3O4@SiO2 mesoporous submicrospheres: reusable biomimetic catalysts for hydrocarbon oxidation. J. Colloid Interface Sci. 469, 296–309 (2016).  https://doi.org/10.1016/j.jcis.2016.01.059 ADSCrossRefGoogle Scholar
  10. 10.
    Lai, L., Xie, Q., Chi, L.N., et al.: Adsorption of phosphate from water by easily separable Fe3O4@SiO2 core/shell magnetic Npsfunctionalized with hydrous lanthanum oxide. J. Colloid Interface Sci. 465, 76–86 (2016).  https://doi.org/10.1016/j.jcis.2015.11.043 ADSCrossRefGoogle Scholar
  11. 11.
    Saravanan, P., Alam, S., Mathur, G.N.: Comparative study on the synthesis of γ-Fe2O3, and Fe3O4, nanocrystals using high-temperature solution-phase technique. J. Mater. Sci. Lett. 22, 1283–1285 (2003).  https://doi.org/10.1023/A:1025470405000 CrossRefGoogle Scholar
  12. 12.
    de la Presa, P., Luengo, Y., Multigner, M., et al.: Study of heating efficiency as a function of concentration, size, and applied field in γ-Fe2O3 nanoparticles. J. Am. Chem. Soc. 116, 25602–25610 (2012).  https://doi.org/10.1021/jp310771p CrossRefGoogle Scholar
  13. 13.
    Lemine, O.M., Omri, K., Iglesias, M., Velasco, V., Crespo, P., de la Presa, P., el Mir, L., Bouzid, H., Yousif, A., al-Hajry, A.: γ-Fe2O3 by sol–gel with large Nps size for magnetichyperthermia application. J. Alloys Compd. 607, 125–131 (2014).  https://doi.org/10.1016/j.jallcom.2014.04.002 CrossRefGoogle Scholar
  14. 14.
    Zhang, L., Huang, Z., Shao, H., Li, Y., Zheng, H.: Effects of γ-Fe2O3, on γ-Fe2O3 /Fe3O4, composite magnetic fluid by low-temperature low-vacuum oxidation method. Mater. Des. 105, 234–239 (2016).  https://doi.org/10.1016/j.matdes.2016.05.077 ADSCrossRefGoogle Scholar
  15. 15.
    Zhang, J.-c., Song, C.-x.Z.-w., Yan, B.-w.: Surface modification of Fe3O4 Npsand their magnetic properties. Int. J. Miner. Metall. Mater. 16, 226–229 (2009).  https://doi.org/10.1016/S1674-4799(09)60038-8 CrossRefGoogle Scholar
  16. 16.
    Zhang, L., Qiao, S., Jin, Y., et al.: Magnetic hollow spheres of periodic mesoporous organosilica and Fe3O4 nanocrystals: fabrication and structure control. Adv. Mater. 20, 805–809 (2010).  https://doi.org/10.1002/adma.200700900 ADSCrossRefGoogle Scholar
  17. 17.
    Abbas, M., Rao, B.P., Islam, M.N., et al.: Highly stable-silica encapsulating magnetite nanoparticles (Fe3O4/SiO2) synthesized using single surfactantless- polyol. Ceram. Int. 40, 1379–1385 (2014).  https://doi.org/10.1016/j.ceramint.2013.07.019 CrossRefGoogle Scholar
  18. 18.
    Vivekanandhan, S., Venkateswarlu, M., Carnahan, D., Misra, M., Mohanty, A.K., Satyanarayana, N.: Sol–gel med iated surface modification of nanocrystalline NiFe2O4 spinel powderswithamorphous SiO2. Ceram. Int. 39, 4105–4111 (2013).  https://doi.org/10.1016/j.ceramint.2012.10.265 CrossRefGoogle Scholar
  19. 19.
    Zhang, L., Shao, H.P., Zheng, H., Lin, T., Guo, Z.M.: Synthesis and characterization of Fe3O4@SiO2 magnetic composite Nps by a one-pot process. Int. J. Miner. Metall. Mater. 23, 1112–1118 (2016).  https://doi.org/10.1007/s12613-016-1329-6 CrossRefGoogle Scholar
  20. 20.
    Yang, Y., Qi, S., Wang, J.: Characterization of a microwave absorbent prepared by coprecipitation reaction of iron oxide on the surface of graphite nanosheet. J. Materials Science & Engineering B. 177, 1734–1740 (2012).  https://doi.org/10.1016/j.mseb.2012.08.027 ADSCrossRefGoogle Scholar
  21. 21.
    Mohamed Iqbal, R., Shabir, M.F., Dilip Jerold, B.: Investigation on the thermal properties of the multilayered ceramic coatings deposited using atmospheric plasma spraying. Mater. Res. Innov. 19, 1–5 (2015).  https://doi.org/10.1179/1432891715Z.0000000001689 CrossRefGoogle Scholar
  22. 22.
    Venkateswarlu, S., Kumar, S.H., Jyothi, N.V.V.: Rapid removal of Ni(II) from aqueous solution using 3-Mercaptopropionic acid functionalized bio magnetite nanoparticles. Water Resources and Industry. 12, 1–7 (2015).  https://doi.org/10.1016/j.wri.2015.09.001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations