Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 2, pp 261–267 | Cite as

Effects of Nd, Al Doping on the Structure and Properties of BiFeO3

  • Siyu Liu
  • Guojian JiangEmail author
  • Gaosheng Liu
  • Wenjun Li
  • Juanjuan Xing
Original Research


The BiFeO3(BFO) and Bi0.95Nd0.05Fe1-xAlxO3 (x = 0, 0.03, 0.05, 0.075, 0.1) powders were prepared at 200 °C for 24 h by hydrothermal method. The effects of Al doping content on the structure, morphology, magnetic, and photocatalytic properties were studied. X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FTIR) demonstrated the compounds are distorted rhombohedral perovskite structure without any other heterogeneity and structural transition. Field emission scanning electron microscope (FESEM) reflected surface of compounds is a dense, agglomerated sphere. As the concentration of Al3+ increases, a small part of the spherical crystallites eventually becomes cauliflower shape. Energy-dispersive X-ray (EDS) showed the Bi0.95Nd0.05Fe0.95Al0.05O3 sample mainly consists of five elements (Bi, Fe, O, Nd, Al) and atom radio matched well with the formula. Vibrating sample magnetometer (VSM) integrated in a physical property measurement system (PPMS-9) illustrated introducing Nd3+ ions into BFO will enhance its magnetism at room temperature. However, with the increase of non-magnetic ion Al3+ concentration in Bi0.95Nd0.05Fe1-xAlxO3 (x = 0, 0.03, 0.05, 0.075, 0.1), the network structure of Fe-O-Fe was destroyed, which led to the decrease of its net magnetization, so that the hysteresis loop shows paramagnetism. The photocatalytic performance of BFO increased initially and decreased afterwards as Al3+ concentration increased, and the best catalytic performance was achieved at x = 0.05.


BiFeO3 Nd, Al doping Hydrothermal method Magnetism 


Funding Information

This study is supported by the Shanghai Collaborative Innovation Fund (XTCX2017-2), Shanghai Science and Technology Achievement Transformation Association, Shanghai Education Development Foundation and Shanghai Science and Technology Achievement Transformation Foundation (LM201678, LM201772), and Minhang District Science and Technology Project (2015MH172).


  1. 1.
    Dagotto, E.: When oxides meet face to face. Science. 318, 1076–1077 (2007)CrossRefGoogle Scholar
  2. 2.
    Michel, C., Moreau, J.M., Achenbach, G.D., Gerson, R., Jameset, W.J.: The atomic structure of BiFeO3. Solid State Commun. 7, 701–704 (1969)ADSCrossRefGoogle Scholar
  3. 3.
    Bhide, V.G., Multani, M.S.: Mossbauer effect in ferroelectric-antiferromagnetic BiFeO3. Solid State Commun. 3, 271–274 (1965)ADSCrossRefGoogle Scholar
  4. 4.
    Kumar, V., Gaur, A., Kotnala, R.K.: Anomalous dielectric response with suppression in Neel temperature of Bi0.9Y0.1Fe1-xMnxO3, (0⩽x⩽0.07) ceramics. J. Alloys Compd. 551, 410–414 (2013)CrossRefGoogle Scholar
  5. 5.
    Karthick, R., Srinivasan, R.: A study on impact of zinc substitution on magneto-optic properties of manganese ferrite nanoferrofluids. J. Magn. Magn. Mater. 441, 443–447 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    Bibes, M., Barthelemy, A.: Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7, 425–426 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Liu, X., Cheng, B., Hu, J., Qin, H., Jiang, M.: Preparation, structure, resistance and methane-gas sensing properties of nominal La1-xMgxFeO3. Sensors and Actuators B Chem. 133, 340–344 (2008)CrossRefGoogle Scholar
  8. 8.
    Wang, X., Song, J., Liu, J., Wang, Z.L.: Direct-current nanogenerator driven by ultrasonic waves. Science. 316, 102–105 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Kordulis, C., Bourikas, K., Gousi, M., Kordouli, E., Lycourghiotis, A.: Development of nickel based catalysts for the transformation of natural triglycerides and related compounds into green diesel: a critical review. Appl. Catal. B Environ. 181, 156–196 (2016)CrossRefGoogle Scholar
  10. 10.
    Dhanalakshmi, R., Vanga, P.R., Ashok, M., Giridharan, N.V.: The effect of a 0.5T magnetic field on the photocatalytic activity of recyclable Nd-modified BiFeO3 magnetic catalysts. IEEE Magn. Lett. 7, 1–4 (2016)CrossRefGoogle Scholar
  11. 11.
    Catalan, G., Scott, J.F.: Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)CrossRefGoogle Scholar
  12. 12.
    Ederer, C., Spaldin, N.A.: Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Physical Review B. 71, 401 (2004)Google Scholar
  13. 13.
    Khomchenko, V.A., Kiselev, D.A., Bdikin, I.K., Shvartsman, V.V., Borisov, P., Kleemann, W., Vieira, J.M., Kholkin, A.L.: Crystal structure and multiferroic properties of Gd-substituted BiFeO3. Appl. Phys. Lett. 93, 759 (2008)CrossRefGoogle Scholar
  14. 14.
    Qian, F.Z., Jiang, J.S., Jiang, D.M., Wang, C.M., Zhang, W.G.: Improved multiferroic properties and a novel magnetic behavior of Bi0.8La0.2Fe1-xCoxO3, nanoparticles. J. Magn. Magn. Mater. 322, 3127–3130 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Mazumder, R., Sen, A.: Effect of Pb-doping on dielectric properties of BiFeO3 ceramics. J. Alloys Compd. 475, 577–580 (2009)CrossRefGoogle Scholar
  16. 16.
    Mishra, R.K., Pradhan, D.K., Choudhary, R.N.P., Banerjee, A.: Dipolar and magnetic ordering in Nd-modified BiFeO3, nanoceramics. J. Magn. Magn. Mater. 320, 2602–2607 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Raghavan, C.M., Kim, J.W., Kim, S.S.: Structural and ferroelectric properties of chemical solution deposited (Nd, Cu) co-doped BiFeO3, thin film. Ceram. Int. 39, 3563–3568 (2013)CrossRefGoogle Scholar
  18. 18.
    Guo, R., Fang, L., Dong, W., Zheng, F., Shen, M.: Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles. J. Phys. Chem. C. 114, 21390–21396 (2010)CrossRefGoogle Scholar
  19. 19.
    Wang, G.M., Kothari, D., Reddy, V.R., Gupta, A.: Structural, thermal and electrical study of multiferroic BiFeO3 ceramic with Al3+ and Ba2+ co-substitution. Phys. Procedia. 49, 199–204 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Chandel, S., Thakur, P., Thakur, S.S., Kanwar, V., Tomar, M., Gupta, V., Thakur, A.: Effect of non-magnetic Al3+ doping on structural, optical, electrical, dielectric and magnetic properties of BiFeO3 ceramics. Ceram. Int. 44, 4711–4718 (2018)CrossRefGoogle Scholar
  21. 21.
    G.L. Yuan, Siu Wing or, J.M. Liu, Z.G. Liu, Appl. Phys. Lett. 89 (2006) 052905Google Scholar
  22. 22.
    Wu, C., Wei, J., Kong, F.: Effect of rare earth dopants on the morphologies and photocatalytic activities of BiFeO3, microcrystallites. J Mater Sci Mater Elec. 24, 1530–1535 (2013)CrossRefGoogle Scholar
  23. 23.
    Zheng, Y., Pan, Z., Wang, X.: Advances in photocatalysis in China. Chin. J. Catal. 34, 524–535 (2013)CrossRefGoogle Scholar
  24. 24.
    Wang, H.C., Lin, Y.H., Feng, Y.N., Shen, Y.: Photocatalytic behaviors observed in Ba and Mn doped BiFeO3, nanofibers. J Electroceramics. 31, 271–274 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Siyu Liu
    • 1
  • Guojian Jiang
    • 1
    Email author
  • Gaosheng Liu
    • 2
  • Wenjun Li
    • 3
  • Juanjuan Xing
    • 4
  1. 1.School of Material Science and EngineeringShanghai Institute of TechnologyShanghaiPeople’s Republic of China
  2. 2.Xinzhuang Industrial Zone, Shanghai Daejoo Electric Materials Co., LtdShanghaiPeople’s Republic of China
  3. 3.School of Chemical Science and EngineeringTongji UniversityShanghaiPeople’s Republic of China
  4. 4.School of Material Science and EngineeringShanghai UniversityShanghaiPeople’s Republic of China

Personalised recommendations