Advertisement

Topological Structures in Unconventional Scenario for 2D Cuprates

  • A. S. MoskvinEmail author
  • Yu. D. Panov
Original Paper
  • 40 Downloads

Abstract

Numerous experimental data point to cuprates as d-d charge transfer unstable systems whose description implies the inclusion of the three many-electron valence states CuO\(_{4}^{7-,6-,5-}\) (nominally Cu1+,2+,3+) on an equal footing as a well-defined charge triplet. We introduce a minimal model to describe the charge degree of freedom in cuprates with the on-site Hilbert space reduced to only the three states and make use of the S = 1 pseudospin formalism. The formalism constitutes a powerful method to study complex phenomena in interacting quantum systems characterized by the coexistence and competition of various ordered states. Overall, such a framework provides a simple and systematic methodology to predict and discover new kinds of orders. In particular, the pseudospin formalism provides the most effective way to describe different topological structures, in particular, due to a possibility of a geometrical two-vector description of the on-site states. We introduce and analyze effective pseudospin Hamiltonian with on-site and inter-site charge correlations, two types of a correlated one-particle transfer and two-particle, or the composite boson transfer. The latter is of a principal importance for the HTSC perspectives. The 2D S = 1 pseudospin system is prone to a creation of different topological structures, which form topologically protected inhomogeneous distributions of the eight local S = 1 pseudospin order parameters. We present a short overview of localized topological structures, typical for S = 1 (pseudo)spin systems, focusing on unexpected antiphase domain walls in parent cuprates and so-called quadrupole skyrmion, which are believed to be candidates for a topological charge excitation in parent or underdoped cuprates. Puzzlingly, these unconventional structures can be characterized by an uniform distribution of the mean on-site charge, that makes these invisible for X-rays. Quasi-classical approximation and computer simulation are applied to analyze localized topological defects and evolution of the domain structures in “negative-U” model under charge order-superfluid phase transition.

Keywords

High-Tc cuprates Charge degree of freedom S = 1 pseudospin formalism Topological structures Unconventional skyrmions 

Notes

Acknowledgements

One of the authors (ASM) would like to thank A. Bianconi, R. Micnas, A. Menushenkov, and S.-L. Drechsler for helpful discussions. The work supported by Act 211 Government of the Russian Federation, agreement No 02.A03.21.0006 and by the Ministry of Education and Science, projects 2277 and 5719.

References

  1. 1.
    Bednorz, J.G., Müller, K. A.: Z. Phys. B Condens. Matter 64(2), 189 (1986).  https://doi.org/10.1007/BF01303701 ADSGoogle Scholar
  2. 2.
    Uemura, Y.J.: Physica C: Supercond. 282-287, 194 (1997).  https://doi.org/10.1016/S0921-4534(97)00194-9 ADSGoogle Scholar
  3. 3.
    Micnas, R., Ranninger, J., Robaszkiewicz, S.: Rev. Modern Phys. 62(1), 113 (1990).  https://doi.org/10.1103/RevModPhys.62.113 ADSGoogle Scholar
  4. 4.
    Alexandrov, A.S.: Phys. Scr. 83(3), 038301 (2011).  https://doi.org/10.1088/0031-8949/83/03/038301 ADSGoogle Scholar
  5. 5.
    Phillips, P.: Philos. Trans. Royal Soc. Math. Phys. Eng. Sci. 369(1941), 1572 (2011).  https://doi.org/10.1098/rsta.2011.0005 ADSGoogle Scholar
  6. 6.
    Hizhnyakov, V., Sigmund, E.: Physica C: Supercond. 156(5), 655 (1988).  https://doi.org/10.1016/0921-4534(88)90141-4 ADSGoogle Scholar
  7. 7.
    Emery, V.J., Kivelson, S.A.: Physica C: Supercond 209(4), 597 (1993).  https://doi.org/10.1016/0921-4534(93)90581-A ADSGoogle Scholar
  8. 8.
    Emery, V.J., Kivelson, S.A.: Nature 374(6521), 434 (1995).  https://doi.org/10.1038/374434a0 ADSGoogle Scholar
  9. 9.
    Emery, V.J., Kivelson, S.A.: Phys. Rev. Lett. 74(16), 3253 (1995).  https://doi.org/10.1103/PhysRevLett.74.3253 ADSGoogle Scholar
  10. 10.
    Furrer, A., Allenspach, P., Fauth, F., Guillaume, M., Henggeler, W., Mesot, J., Rosenkranz, S.: Physica C: Supercond. 235-240, 261 (1994).  https://doi.org/10.1016/0921-4534(94)91363-3 ADSGoogle Scholar
  11. 11.
    Tranquada, J.M., Sternlieb, B.J., Axe, J.D., Nakamura, Y., Uchida, S.: Nature 375(6532), 561 (1995).  https://doi.org/10.1038/375561a0 ADSGoogle Scholar
  12. 12.
    Bianconi, A., Saini, N.L., Lanzara, A., Missori, M., Rossetti, T., Oyanagi, H., Yamaguchi, H., Oka, K., Ito, T.: Phys. Rev. Lett. 76(18), 3412 (1996).  https://doi.org/10.1103/PhysRevLett.76.3412 ADSGoogle Scholar
  13. 13.
    Zaanen, J., van Saarloos, W.: Physica C: Supercond. 282-287, 178 (1997).  https://doi.org/10.1016/S0921-4534(97)00186-X ADSGoogle Scholar
  14. 14.
    Dionne, G.F.: J. Appl. Phys. 69 (8), 5194 (1991).  https://doi.org/10.1063/1.348096 ADSGoogle Scholar
  15. 15.
    Bersuker, G.I., Goodenough, J.B.: Physica C: Supercond. 274(3-4), 267 (1997).  https://doi.org/10.1016/S0921-4534(96)00636-3 ADSGoogle Scholar
  16. 16.
    Moskvin, A.S., Physica, B.: Condens. Matter 252(3), 186 (1998).  https://doi.org/10.1016/S0921-4526(98)00155-0 Google Scholar
  17. 17.
    Wiegmann, P.B.: Phys. Rev. Lett. 60(9), 821 (1988).  https://doi.org/10.1103/PhysRevLett.60.821 ADSGoogle Scholar
  18. 18.
    Rodriguez, J.P.: Phys. Rev. B 39(4), 2906 (1989).  https://doi.org/10.1103/PhysRevB.39.2906 ADSGoogle Scholar
  19. 19.
    Moskvin, A.S., Ovchinnikov, A.S.: Physica B: Condens. Matter 259-261, 476 (1999).  https://doi.org/10.1016/S0921-4526(98)00929-6 ADSGoogle Scholar
  20. 20.
    Senthil, T., Fisher, M.P.A.: Phys. Rev. Lett. 86(2), 292 (2001).  https://doi.org/10.1103/PhysRevLett.86.292 ADSGoogle Scholar
  21. 21.
    Campi, G., Bianconi, A., Poccia, N., Bianconi, G., Barba, L., Arrighetti, G., Innocenti, D., Karpinski, J., Zhigadlo, N.D., Kazakov, S.M., Burghammer, M., Zimmermann, M.V., Sprung, M., Ricci, A.: Nature 525(7569), 359 (2015).  https://doi.org/10.1038/nature14987 ADSGoogle Scholar
  22. 22.
    Moskvin, A.S.: Phys. Rev. B 84(7), 075116 (2011).  https://doi.org/10.1103/PhysRevB.84.075116 ADSGoogle Scholar
  23. 23.
    Moskvin, A.S.: Low Temp. Phys. 33(2), 234 (2007).  https://doi.org/10.1063/1.2719961 ADSGoogle Scholar
  24. 24.
    Moskvin, A.S.: Phys. Rev. B 79(11), 115102 (2009).  https://doi.org/10.1103/PhysRevB.79.115102 ADSGoogle Scholar
  25. 25.
    Moskvin, A.S.: J. Phys. Condens. matter 25(8), 085601 (2013).  https://doi.org/10.1088/0953-8984/25/8/085601 ADSGoogle Scholar
  26. 26.
    Moskvin, A.S.: J. Phys Conf. Ser. 592(1), 012076 (2015).  https://doi.org/10.1088/1742-6596/592/1/012076 Google Scholar
  27. 27.
    Moskvin, A.S.: J. Supercond. Nov. Magn. 29(4), 1057 (2016).  https://doi.org/10.1007/s10948-016-3376-7 Google Scholar
  28. 28.
    Batista, C.D., Ortiz, G.: Adv. Phys. 53(1), 1 (2004).  https://doi.org/10.1080/00018730310001642086 ADSGoogle Scholar
  29. 29.
    Ashkenazi, J.: J. Supercond. Nov. Magn. 24(4), 1281 (2011).  https://doi.org/10.1007/s10948-010-0823-8 MathSciNetGoogle Scholar
  30. 30.
    Phillips, P.W., Langley, B.W., Hutasoit, J.A.: Phys. Rev. B 88(11), 115129 (2013).  https://doi.org/10.1103/PhysRevB.88.115129 ADSGoogle Scholar
  31. 31.
    Pisarev, R.V., Moskvin, A.S., Kalashnikova, A.M., Bush, A.A., Rasing, T.: Phys. Rev. B 74 (13), 132509 (2006).  https://doi.org/10.1103/PhysRevB.74.132509 ADSGoogle Scholar
  32. 32.
    Moskvin, A.S., Neudert, R., Knupfer, M., Fink, J., Hayn, R.: Phys. Rev. B 65(18), 180512 (2002).  https://doi.org/10.1103/PhysRevB.65.180512 ADSGoogle Scholar
  33. 33.
    Moskvin, A.S., Mȧlek, J., Knupfer, M., Neudert, R., Fink, J., Hayn, R., Drechsler, S.L., Motoyama, N., Eisaki, H., Uchida, S.: Phys. Rev. Lett. 91(3), 037001 (2003).  https://doi.org/10.1103/PhysRevLett.91.037001 ADSGoogle Scholar
  34. 34.
    Zhang, F.C., Rice, T.M.: Phys. Rev. B 37(7), 3759 (1988).  https://doi.org/10.1103/PhysRevB.37.3759 ADSGoogle Scholar
  35. 35.
    Moskvin, A.S.: J. Exp. Theor. Phys. Lett. 80(11), 697 (2004).  https://doi.org/10.1134/1.1862797 Google Scholar
  36. 36.
    Moskvin, A.S., Panov, Y.D.: Low Temp. Phys. 37(3), 261 (2011).  https://doi.org/10.1063/1.3580606 ADSGoogle Scholar
  37. 37.
    Moskvin, A.S.: JETP Lett. 96 (6), 385 (2012).  https://doi.org/10.1134/S0021364012180087 ADSGoogle Scholar
  38. 38.
    Moskvin, A.S.: J. Exp. Theor. Phys. 121(3), 477 (2015).  https://doi.org/10.1134/S1063776115090095 ADSGoogle Scholar
  39. 39.
    Altman, E., Auerbach, A.: Phys. Rev. Lett. 89(25), 250404 (2002).  https://doi.org/10.1103/PhysRevLett.89.250404 ADSGoogle Scholar
  40. 40.
    Berg, E., Dalla torre, E.G., Giamarchi, T., Altman, E.: Phys. Rev. B 77(24), 245119 (2008).  https://doi.org/10.1103/PhysRevB.77.245119 ADSGoogle Scholar
  41. 41.
    Mazza, L., Rizzi, M., Lewenstein, M., Cirac, J.I.: Phys. Rev. A 82(4), 043629 (2010).  https://doi.org/10.1103/PhysRevA.82.043629 ADSGoogle Scholar
  42. 42.
    Mikushina, N.A., Moskvin, A.S.: Phys. Lett. A 302(1), 8 (2002).  https://doi.org/10.1016/S0375-9601(02)01084-8 ADSGoogle Scholar
  43. 43.
    Knigavko, A., Rosenstein, B., Chen, Y.F.: Phys. Rev. B 60(1), 550 (1999).  https://doi.org/10.1103/PhysRevB.60.550 ADSGoogle Scholar
  44. 44.
    Anderson, P.W.: J. Phys. Chem. Solids 59(10-12), 1675 (1998).  https://doi.org/10.1016/S0022-3697(98)00081-X ADSGoogle Scholar
  45. 45.
    Nicoletti, D., di Pietro, P., Limaj, O., Calvani, P., Schade, U., Ono, S., Ando, Y., Lupi, S.: J. Phys. 13(12), 123009 (2011).  https://doi.org/10.1088/1367-2630/13/12/123009 Google Scholar
  46. 46.
    Gru̇ninger, M., van der Marel, D., Damascelli, A., Erb, A., Nunner, T., Kopp, T.: Phys. Rev. B 62(18), 12422 (2000).  https://doi.org/10.1103/PhysRevB.62.12422 ADSGoogle Scholar
  47. 47.
    Kishida, H., Matsuzaki, H., Okamoto, H., Manabe, T., Yamashita, M., Taguchi, Y., Tokura, Y.: Nature 405(6789), 929 (2000).  https://doi.org/10.1038/35016036 ADSGoogle Scholar
  48. 48.
    Ono, M., Miura, K., Maeda, A., Matsuzaki, H., Kishida, H., Taguchi, Y., Tokura, Y., Yamashita, M., Okamoto, H.: Phys. Rev. B 70(8), 085101 (2004).  https://doi.org/10.1103/PhysRevB.70.085101 ADSGoogle Scholar
  49. 49.
    Maeda, A., Ono, M., Kishida, H., Manako, T., Sawa, A., Kawasaki, M., Tokura, Y., Okamoto, H.: Phys. Rev. B 70(12), 125117 (2004).  https://doi.org/10.1103/PhysRevB.70.125117 ADSGoogle Scholar
  50. 50.
    Lawler, M.J., Fujita, K., Lee, J., Schmidt, A.R., Kohsaka, Y., Kim, C.K., Eisaki, H., Uchida, S., Davis, J.C., Sethna, J.P., Kim, E.A.: Nature 466(7304), 347 (2010).  https://doi.org/10.1038/nature09169 ADSGoogle Scholar
  51. 51.
    Haase, J., Jurkutat, M., Kohlrautz, J., Haase, J., Jurkutat, M., Kohlrautz, J.: Condens. Matter 2(2), 16 (2017).  https://doi.org/10.3390/condmat2020016 Google Scholar
  52. 52.
    Park, S.R., Fukuda, T., Hamann, A., Lamago, D., Pintschovius, L., Fujita, M., Yamada, K., Reznik, D.: Phys. Rev. B 89(2), 020506 (2014).  https://doi.org/10.1103/PhysRevB.89.020506 ADSGoogle Scholar
  53. 53.
    Panov, Y.D., Moskvin, A.S., Chikov, A.A., Avvakumov, I.L.: J. Low Temp. Phys. 185(5-6), 409 (2016).  https://doi.org/10.1007/s10909-016-1506-z ADSGoogle Scholar
  54. 54.
    Sengupta, P., Batista, C.D.: Phys. Rev. Lett. 98(22), 227201 (2007).  https://doi.org/10.1103/PhysRevLett.98.227201 ADSGoogle Scholar
  55. 55.
    Hamer, C.J., Rojas, O., Oitmaa, J.: Phys. Rev. b 81(21), 214424 (2010).  https://doi.org/10.1103/PhysRevB.81.214424 ADSGoogle Scholar
  56. 56.
    Lapa, R.S., Pires, A.S.T.: J. Magn. Magn. Mater. 327, 1 (2013).  https://doi.org/10.1016/j.jmmm.2012.09.006 ADSGoogle Scholar
  57. 57.
    Moskvin, A.S., Bostrem, I.G., Ovchinnikov, A.S.: J. Exper. Theor. Phys. Lett. 78(12), 772 (2003).  https://doi.org/10.1134/1.1664002 Google Scholar
  58. 58.
    Moskvin, A.S.: Phys. Rev. B 69(21), 214505 (2004).  https://doi.org/10.1103/PhysRevB.69.214505 ADSGoogle Scholar
  59. 59.
    Matsuda, H., Tsuneto, T.: Prog. Theor. Phys. Suppl. 46(0), 411 (1970).  https://doi.org/10.1143/PTPS.46.411 ADSGoogle Scholar
  60. 60.
    Schmid, G., Todo, S., Troyer, M., Dorneich, A.: Phys. Rev. Lett. 88(16), 167208 (2002).  https://doi.org/10.1103/PhysRevLett.88.167208 ADSGoogle Scholar
  61. 61.
    Kresin, V.Z.: J. Supercond. Nov. Magn. 31(3), 611 (2018).  https://doi.org/10.1007/s10948-017-4382-0 Google Scholar
  62. 62.
    Johnston, D.C.: Phys. Rev. Lett. 62(8), 957 (1989).  https://doi.org/10.1103/PhysRevLett.62.957 ADSGoogle Scholar
  63. 63.
    Gor’kov, L.P., Teitel’baum, G.B.: Phys. Rev. Lett. 97(24), 247003 (2006).  https://doi.org/10.1103/PhysRevLett.97.247003 ADSGoogle Scholar
  64. 64.
    Gor’kov, L.P., Teitel’baum, G.B.: J. Phys. Conf. Ser. 108 (1), 012009 (2008).  https://doi.org/10.1088/1742-6596/108/1/012009 Google Scholar
  65. 65.
    Yamaji, Y., Imada, M.: Phys. Rev. Lett. 106(1), 016404 (2011).  https://doi.org/10.1103/PhysRevLett.106.016404 ADSGoogle Scholar
  66. 66.
    Ando, Y., Kurita, Y., Komiya, S., Ono, S., Segawa, K.: Phys. Rev. Lett. 92(19), 197001 (2004).  https://doi.org/10.1103/PhysRevLett.92.197001 ADSGoogle Scholar
  67. 67.
    Ono, S., Komiya, S., Ando, Y.: Phys. Rev. B 75(2), 024515 (2007).  https://doi.org/10.1103/PhysRevB.75.024515 ADSGoogle Scholar
  68. 68.
    Panov, Y.D., Moskvin, A.S., Konev, V.V., Vasinovich, E.V., Ulitko, V.A.: Acta Phys. Pol. A 133(3), 426 (2018).  https://doi.org/10.12693/APhysPolA.133.426 Google Scholar
  69. 69.
    Belavin, A.A., Polyakov, A.M.: J. Exp. Theor. Phys. Lett. 22(10), 245 (1975)Google Scholar
  70. 70.
    Sasaki, J., Matsubara, F.: J. Phys. Soc. Jpn. 66(7), 2138 (1997).  https://doi.org/10.1143/JPSJ.66.2138 ADSGoogle Scholar
  71. 71.
    Voronov, V.P., Ivanov, B.A., Kosevich, A.M.: J. Exp. Theor. Phys. 57(6), 1303 (1983)Google Scholar
  72. 72.
    Ivanov, B.A., Kosevich, A.M.: J. Exp. Theor. Phys. 45(5), 1050 (1977)ADSGoogle Scholar
  73. 73.
    Gouva, M.E., Wysin, G.M., Bishop, A.R., Mertens, F.G.: Phys. Rev. B 39(16), 11840 (1989).  https://doi.org/10.1103/PhysRevB.39.11840 ADSGoogle Scholar
  74. 74.
    Borisov, A.B.: J. Exp. Theor. Phys. Lett. 73(5), 242 (2001).  https://doi.org/10.1134/1.1371062 Google Scholar
  75. 75.
    Bostrem, I.G., Ovchinnikov, A.S.: J. Exp. Theor. Phys. Lett. 76(12), 716 (2002).  https://doi.org/10.1134/1.1556212 Google Scholar
  76. 76.
    Borisov, A.B., Bostrem, I.G., Ovchinnikov, A.S.: J. Exp. Theor. Phys. Lett. 80(2), 103 (2004).  https://doi.org/10.1134/1.1804218 Google Scholar
  77. 77.
    Borisov, A.B., Zykov, S.A., Mikushina, N.A., Moskvin, A.S.: Phys. Solid State 44(2), 324 (2002).  https://doi.org/10.1134/1.1451023 ADSGoogle Scholar
  78. 78.
    Abanov, A., Pokrovsky, V.L.: Phys. Rev. B 58(14), R8889 (1998).  https://doi.org/10.1103/PhysRevB.58.R8889 ADSGoogle Scholar
  79. 79.
    Ivanov, B.A., Merkulov, A.Y., Stephanovich, V.A., Zaspel, C.E.: Phys. Rev. B 74(22), 224422 (2006).  https://doi.org/10.1103/PhysRevB.74.224422 ADSGoogle Scholar
  80. 80.
    Galkina, E.G., Kirichenko, E.V., Ivanov, B.A., Stephanovich, V.A.: Phys. Rev. B 79(13), 134439 (2009).  https://doi.org/10.1103/PhysRevB.79.134439 ADSGoogle Scholar
  81. 81.
    Perelomov, A.: Generalized Coherent States and Their Applications. Springer, Berlin (1986).  https://doi.org/10.1007/978-3-642-61629-7 zbMATHGoogle Scholar
  82. 82.
    Istomin, R.A., Moskvin, A.S.: J. Exp. Theor. Phys. Lett. 71 (8), 338 (2000).  https://doi.org/10.1134/1.568346 Google Scholar
  83. 83.
    Wiegmann, P.B.: Phys. Rev. Lett. 60(9), 821 (1988).  https://doi.org/10.1103/PhysRevLett.60.821 ADSGoogle Scholar
  84. 84.
    Shraiman, B.I., Siggia, E.D.: Phys. Rev. Lett. 61(4), 467 (1988).  https://doi.org/10.1103/PhysRevLett.61.467 ADSMathSciNetGoogle Scholar
  85. 85.
    Wen, X.G., Zee, A.: Phys. Rev. Lett. 61(8), 1025 (1988).  https://doi.org/10.1103/PhysRevLett.61.1025 ADSMathSciNetGoogle Scholar
  86. 86.
    Chakravarty, S., Halperin, B.I., Nelson, D.R.: Phys. Rev. B 39 (4), 2344 (1989).  https://doi.org/10.1103/PhysRevB.39.2344 ADSGoogle Scholar
  87. 87.
    Voruganti, P., Doniach, S.: Phys. Rev. B 41(13), 9358 (1990).  https://doi.org/10.1103/PhysRevB.41.9358 ADSGoogle Scholar
  88. 88.
    Gooding, R.J.: Phys. Rev. Lett. 66(17), 2266 (1991).  https://doi.org/10.1103/PhysRevLett.66.2266 ADSGoogle Scholar
  89. 89.
    Haas, S., Zhang, F.C., Mila, F., Rice, T.M.: Phys. Rev. Lett. 77(14), 3021 (1996).  https://doi.org/10.1103/PhysRevLett.77.3021 ADSGoogle Scholar
  90. 90.
    Marino, E.C., Neto, M.B.S.: Phys. Rev. Lett. B 64(9), 092511 (2001).  https://doi.org/10.1103/PhysRevB.64.092511 ADSGoogle Scholar
  91. 91.
    Morinari, T.: Phys. Rev. Lett. B 65(6), 064513 (2002).  https://doi.org/10.1103/PhysRevB.65.064513 ADSGoogle Scholar
  92. 92.
    Morinari, T.: Phys. Rev. Lett. B 72(10), 104502 (2005).  https://doi.org/10.1103/PhysRevB.72.104502 ADSGoogle Scholar
  93. 93.
    Nazario, Z., Santiago, D.I.: Phys. Rev. Lett. 97(19), 197201 (2006).  https://doi.org/10.1103/PhysRevLett.97.197201 ADSGoogle Scholar
  94. 94.
    Raičević, I., Popović, D., Panagopoulos, C., Benfatto, L., Silva Neto, M.B., Choi, E.S., Sasagawa, T.: Phys. Rev. Lett. 106(22), 227206 (2011).  https://doi.org/10.1103/PhysRevLett.106.227206 ADSGoogle Scholar
  95. 95.
    Bogdanov, A., Hubert, A.: J. Magn. Magn. Mater. 138(3), 255 (1994).  https://doi.org/10.1016/0304-8853(94)90046-9 ADSGoogle Scholar
  96. 96.
    Rößler, U.K., Bogdanov, A.N., Pfleiderer, C.: Nature 442(7104), 797 (2006).  https://doi.org/10.1038/nature05056 ADSGoogle Scholar
  97. 97.
    Nagaosa, N., Tokura, Y.: Nat. Nanotechnol. 8(12), 899 (2013).  https://doi.org/10.1038/nnano.2013.243 ADSGoogle Scholar
  98. 98.
    Varma, C.M.: Phys. Rev. Lett. B 73(15), 155113 (2006).  https://doi.org/10.1103/PhysRevB.73.155113 ADSGoogle Scholar
  99. 99.
    Green, A.G.: Phys. Rev. B 61(24), R16299 (2000).  https://doi.org/10.1103/PhysRevB.61.R16299 ADSGoogle Scholar
  100. 100.
    Li, L., Wang, Y., Komiya, S., Ono, S., Ando, Y., Gu, G.D., Ong, N.P.: Phys. Rev. Lett. B 81(5), 054510 (2010).  https://doi.org/10.1103/PhysRevB.81.054510 ADSGoogle Scholar
  101. 101.
    Timm, C., Girvin, S.M., Fertig, H.A.: Phys. Rev. B 58(16), 10634 (1998).  https://doi.org/10.1103/PhysRevB.58.10634 ADSGoogle Scholar
  102. 102.
    Egorov, R.F., Bostrem, I.G., Ovchinnikov, A.S.: Phys. Lett. A 292(6), 325 (2002).  https://doi.org/10.1016/S0375-9601(01)00813-1 ADSMathSciNetGoogle Scholar
  103. 103.
    Batrouni, G.G., Scalettar, R.T.: Phys. Rev. Lett. 84(7), 1599 (2000).  https://doi.org/10.1103/PhysRevLett.84.1599 ADSGoogle Scholar
  104. 104.
    Hėbert, F., Batrouni, G.G., Scalettar, R.T., Schmid, G., Troyer, M., Dorneich, A.: Phys. Rev. Lett. B 65(1), 014513 (2001).  https://doi.org/10.1103/PhysRevB.65.014513 ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ural Federal UniversityEkaterinburgRussia

Personalised recommendations