Advertisement

125Te-NMR Study in Novel Superconductor Pb1−xTlxTe with Valence Skipping Dopants

  • H. MukudaEmail author
  • M. Yashima
  • T. Matsumura
  • S. Maki
  • Y. Kitaoka
  • K. Miyake
  • H. Murakami
  • P. Giraldo-Gallo
  • T. H. Geballe
  • I. R. Fisher
Original Paper
  • 30 Downloads

Abstract

Pb1−xTlxTe is an anomalous low carrier density superconductor for which the origin of the superconductivity is not understood. Thallium is the only dopant to cause superconductivity in PbTe, suggesting that these specific impurities have a unique effect on the electronic states. Systematic 125Te-NMR studies on single-crystallines Pb1−xTlxTe (x = 0, 0.35, 1.0 at%) reveal that the Tl dopants induce spatially inhomogeneous electronic states around the Tl dopants. In the superconducting sample at x = 1.0 at%, 125Te nuclear spin relaxation rate (1/T1T) in the vicinity of the Tl dopants is unexpectedly enhanced below \(\sim \)10 K. This coincides with the temperature below which the resistivity exhibits an upturn. By contrast, such anomalies were not detected in the non-superconducting sample at x = 0.35 at%. These observations can be consistently explained by charge Kondo effect, in which two nearly degenerate valence states of the Tl dopant form a resonating valence state upon cooling below 10 K. Based on these observations, we suggest that the coherent hopping of 6s-electron pair may provide the pairing interaction (i.e., a negative-U scenario), leading to the anomalously high Tc found for Pb1−xTlxTe.

Keywords

Superconductivity Charge Kondo effect Valence skipper NMR 

Notes

Acknowledgements

We thank H. Matsuura for valuable comments.

Funding Information

This work was supported by Izumi Science and Technology Foundation, Toyota Riken Scolar, and JSPS KAKENHI (Grant Nos. 26400356, 26610102, 16H04013, 25400369, 17K05555, and 18K18734). The work at Stanford University was supported by AFOSR Grant No. FA9550-09-1-0583.

References

  1. 1.
    Chernik, I.A., et al.: . Sov. Phys. Solid State 23, 817 (1981)Google Scholar
  2. 2.
    Murakami, H., et al.: . Physica C (Amsterdam) 269, 83 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    Nemov, S.A., Ravich, Y.I.: . Phys. Usp. 41, 735 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    Matsushita, Y., et al.: . Phys. Rev. Lett. 94, 157002 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Schooley, J.F., et al.: . Phys. Rev. Lett. 12, 474 (1964)ADSCrossRefGoogle Scholar
  6. 6.
    Matsushita, Y., et al.: . Phys. Rev. B 74, 134512 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Giraldo-Gallo, P., et al. arXiv:http://arXiv.org/abs/1711.05723
  8. 8.
    Andronik, K.I., et al.: . Phys. Status Solidi B 133, K61 (1986)ADSCrossRefGoogle Scholar
  9. 9.
    Varma, C.M.: . Rev, Phys. Lett. 61, 2713 (1988)CrossRefGoogle Scholar
  10. 10.
    Taraphder, A., Coleman, P.: . Phys. Rev. Lett. 66, 2814 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    Costi, T.A., Zlatic, V.: . Phys. Rev. Lett. 108, 036402 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Dzero, M., Schmalian, J.: . Phys. Rev. Lett. 94, 157003 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Yanagisawa, T., Hase, I.: . Phys. C 494, 24 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Matsuura, H., Miyake, K.: . J. Phys. Soc. Jpn 81, 113705 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Erickson, A.S., et al.: . Phys. Rev. B. 81, 134521 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Mukuda, H., et al.: . J. Phys. Soc. Jpn 87, 023706 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    Kondo, J.: . Prog. Theor. Phys. 32, 37 (1964)ADSCrossRefGoogle Scholar
  18. 18.
    Miyake, K., Matsuura, H.: arXiv:1806.00254
  19. 19.
    Dalven, R.: . Infrared Phys 9, 141 (1969)ADSCrossRefGoogle Scholar
  20. 20.
    Ahmad, S., et al.: . Phys. Rev. B. 74, 155205 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Xiong, K., et al.: . J. Phys. D: Appl. Phys. 43, 405403 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Graduate School of Engineering ScienceOsaka UniversityOsakaJapan
  2. 2.Center for Advanced High Magnetic Field ScienceOsaka UniversityOsakaJapan
  3. 3.Institute of Laser EngineeringOsaka UniversityOsakaJapan
  4. 4.Department of Applied PhysicsStanford UniversityStanfordUSA

Personalised recommendations