Advertisement

Detecting Electronic Nematicity by the Angle-Resolved Transverse Resistivity Measurements

  • J. Wu
  • A. T. Bollinger
  • X. He
  • I. BožovićEmail author
Original Paper
  • 47 Downloads

Abstract

The observation of nonzero voltage transverse to the current flow, in zero magnetic field, is a sensitive indication of the nematic order in cuprate superconductors. But this effect should be carefully identified and differentiated from various conceivable experimental artifacts. Here we discuss in detail the five types of artifacts commonly encountered in transport experiments and explain how we rule out these possibilities by decisive experimental evidence.

Keywords

High-temperature superconductivity Electronic nematicity Spontaneous symmetry breaking Transverse voltage Cuprate 

Notes

Funding Information

The experimental work was done at the Brookhaven National Laboratory and was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. X. H. was supported by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4410.

References

  1. 1.
    Fradkin, E., Kivelson, S.A., Lawler, M.J., Eisenstein, J.P., Mackenzie, A.P.: Nematic Fermi fluids in condensed matter physics. Annu. Rev. Condens. Matter Phys. 1, 153–78 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Kivelson, S.A., Fradkin, E., Emery, V.J.: Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    Zaanen, J., Nussinov, Z., Mukhin, S.I.: Duality in 2 + 1D quantum elasticity: superconductivity and quantum nematic order. Ann. Phys. 310, 181–260 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Carlson, E.W., Dahmen, K.A.: Using disorder to detect locally ordered electron nematics via hysteresis. Nat. Commun. 2, 376–379 (2011)CrossRefGoogle Scholar
  5. 5.
    Avci, S., et al.: Magnetically driven suppression of nematic order in an iron-based superconductor. Nat. Commun. 5, 3845 (2014)CrossRefGoogle Scholar
  6. 6.
    Zhou, X.J., et al.: Dual nature of the electronic structure of (La2−x−yNdySrx)CuO4 and La1.85Sr0.15CuO4. Phys. Rev. Lett. 86, 5578–5581 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Ando, Y., Segawa, K., Komiya, S., Lavrov, A.N.: Electrical resistivity anisotropy from self-organized one dimensionality in high-temperature superconductors. Phys. Rev. Lett. 88, 137005 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Abdel-Jawad, M., et al.: Anisotropic scattering and anomalous normal-state transport in a high-temperature superconductor. Nat. Phys. 2, 821–825 (2006)CrossRefGoogle Scholar
  9. 9.
    Lawler, M.J., et al.: Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states. Nature 466, 347–351 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Li, L., Alidoust, N., Tranquada, J.M., Gu, G.D., Ong, N.P.: Unusual Nernst effect suggesting time-reversal violation in the striped cuprate superconductor LBCO. Phys. Rev. Lett. 107, 277001 (2011)CrossRefGoogle Scholar
  11. 11.
    Zhao, L., et al.: Global inversion-symmetry-broken phase inside the pseudogap region of YBa2Cu3 O y. Nat. Phys. 13, 250–254 (2017)CrossRefGoogle Scholar
  12. 12.
    Fernandes, R.M., Chubukov, A.V., Schmalian, J.: What drives nematic order in iron-based superconductors? Nat. Phys. 10, 97–104 (2014)CrossRefGoogle Scholar
  13. 13.
    Fujita, K., et al.: Simultaneous Transitions in Cuprate Momentum-Space Topology and Electronic Symmetry Breaking. Science 344, 612–616 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Wu, J., Bollinger, A.T., He, X., Božović, I.: Spontaneous breaking of rotational symmetry in copper oxide superconductors. Nature 547, 432–435 (2017)CrossRefGoogle Scholar
  15. 15.
    Bozovic, I.: Atomic-layer engineering of superconducting oxides: Yesterday, today, tomorrow. IEEE Trans. Appl. Supercond. 11, 2686–2695 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    Presland, M. R., Tallon, J. L., Buckley, R. G., Flower, N. E.: General trends in oxygen stoichiometry effects on T c in Bi and Tl superconductors. Physica C 176, 95–105 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    Clayhold, J.A., et al.: Combinatorial measurements of Hall effect and resistivity in oxide films. Rev. Sci. Instrum. 79, 033908 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Wu, J., et al.: Anomalous independence of interface superconductivity from carrier density. Nat. Mater. 12, 877–81 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Wu, J., Bollinger, A.T., Sun, Y., Božović, I.: Hall effect in quantum critical charge-cluster glass. Proc. Natl. Acad. Sci. 113, 4284–4289 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Wu, J., Božović, I.: Perspective: extremely fine tuning of doping enabled by combinatorial molecular-beam epitaxy. APL Mater. 3, 062401 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Božović, I., He, X., Wu, J., Bollinger, A. T.: Dependence of the critical temperature in overdoped copper oxides on superfluid density. Nature 536, 309–311 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Segal, A., Karpovski, M., Gerber, A.: Inhomogeneity and transverse voltage in superconductors. Phys. Rev. B 83, 094531 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Vašek, P., Janeček, I., Plecháček, V.: Intrinsic pinning and guided motion of vortices in high-Tc superconductors. Physica C 247, 381–384 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    Da Luz, M.S., et al.: Observation of asymmetric transverse voltage in granular high-Tc superconductors. Physica C 419, 71– 78 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Francavilla, T.L., Cukauskas, E.J., Allen, L.H., Broussard, P.R.: Observation of a transverse voltage in the mixed state of YBCO thin films. IEEE Trans. Appl. Supercond. 5, 1717–1720 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Brookhaven National LaboratoryUptonUSA
  2. 2.Applied Physics DepartmentYale UniversityNew HavenUSA

Personalised recommendations