Superconductivity in Oxides Generated by Percolating Electron or Hole Bipolarons

  • A. ShengelayaEmail author
  • K. A. Müller
Original Paper


It is remarkable that in over three decades since the discovery of high-temperature superconductivity (HTS) in cuprates, no other class of materials has been found to exhibit this property above the liquid nitrogen boiling point at ambient pressure. Here, we describe the conformation of hole and electron bipolarons in doped cuprates and tungstates. Important similarities and differences between them are discussed. Both hole and electron bipolarons can percolate forming filaments or clusters in the bulk or on the surfaces as well. Upon cooling, these electronic objects can show superconducting properties. It is proposed that oxygen-reduced tungsten oxide WO3−x in bulk or thin film form is a promising material to explore the HTS. Such material would be another example of bipolaronic superconductivity similar to cuprates. However, there is also an important difference: in the cuprates, holes predominantly enter the oxygen orbitals and hole bipolarons are composed of three-spin polarons, whereas in the tungstates, doped electrons are located on tungsten ions and W5+–O2−–W5+ electron bipolarons form from 5d1 W5+ polarons.


Cuprates Bipolarons Tungstates 


Funding Information

This work was supported by the Shota Rustavely National Science Foundation of Georgia under Grant No. 216860.


  1. 1.
    Bednorz, J.G., Müller, K.A.: Adv. Chem. 100, 757 (1988). Nobel LectureGoogle Scholar
  2. 2.
    Müller, K.A.: J. Supercond. Nov. Magn. 30, 3007 (2017)CrossRefGoogle Scholar
  3. 3.
    Kochelaev, B.I., Sichelschmidt, J., Elschner, B., Lemor, W., Loidl, A.: Phys. Rev. Lett. 79, 4274 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Emery, V.J., Reiter, G.: Phys. Rev. B 38, 4547 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    Kabanov, V.V., Mihailovic, D.: J. Supercond. 13, 959 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Mihailovic, D., Kabanov, V.V.: Phys. Rev. B 63, 054505 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Sahle, W., Nygren, M.: J. Solid State Chem. 2, 154 (1983)ADSCrossRefGoogle Scholar
  8. 8.
    Schirmer, O.F., Salje, E.: Solid State Commun. 33, 333 (1980)ADSCrossRefGoogle Scholar
  9. 9.
    Kochelaev, B.I., Safina, A.M., Shengelaya, A., Müller, K.A., Conder, K.: Mod. Phys. Lett. B 17, 415 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Mertelj, T., Kabanov, V.V., Mihailovic, D.: Phys. Rev. Lett. 94, 147003 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Shengelaya, A., Bruun, M., Kochelaev, B.I., Safina, A., Conder, K., Müller, K.A.: Phys. Rev. Lett. 93, 017001 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Bursill, L.A., Hyde, B.G.: J. Solid State Chem. 4, 430 (1972)ADSCrossRefGoogle Scholar
  13. 13.
    Stoneham, A.M., Durham, P.J.: J. Phys. Chem. Solids 34, 2127 (1973)ADSCrossRefGoogle Scholar
  14. 14.
    Magnéli, A.: Arkiv. Kemi 1, 223 (1949)Google Scholar
  15. 15.
    Magnéli, A., Blomberg-Hansson, B., Kihlborg, L., Sundkvist, G.: Acta Chem. Scand. 9, 1382 (1955)CrossRefGoogle Scholar
  16. 16.
    Shengelaya, A., Müller, K.A.: EPL (Europhys. Lett.) 109, 27001 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Mihailovic, D., Kabanov, V.V., Müller, K.A.: Europhs. Lett. 57, 254 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Aird, A., Salje, E.K.H.: J. Phys. Condens. Matter 10, L377 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    Kopelevich, Y., da Silva, R.R., Camargo, B.C.: Physica C 514, 237 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Yoshimatsu, K., Sakata, O., Ohtomo, A.: Sci. Rep. 7, 12544 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsTbilisi State UniversityTbilisiGeorgia
  2. 2.IBM Research LaboratoryRüschlikonSwitzerland

Personalised recommendations