The Effects of La Doping on the Crystal Structure, Magnetic, and Microwave Absorption Properties of Nd2Fe14B Compound

  • Yongqiang Xu
  • Qingrong YaoEmail author
  • Pengcheng Yang
  • Huaiying ZhouEmail author
  • Guanghui Rao
  • Jianqiu Deng
  • Zhongmin Wang
Original Paper


The crystal structure, magnetic, and microwave absorption properties of the (Nd1−xLax)2Fe14B system have been investigated. The La2Fe14B compound was successfully synthesized and refined, giving a tetragonal structure, space group P42/mnm with the Nd2Fe14B-type structure. The crystal structure parameters of the (Nd1−xLax)2Fe14B compounds were determined by full-profile Rietveld refinements. The results revealed that all intermediate alloys form a continuous solid solution. The normalized lattice parameters of the (Nd1−xLax)2Fe14B compounds increase linearly with an increase of La concentration. Based on the results of DSC measurements and X-ray powder diffraction examinations, the phase diagram of the Nd2Fe14B-La2Fe14B system has been constructed. The remanence (Mr) and coercivity (Hc) of (Nd1−xLax)2Fe14B (x = 0.00, 0.10, 0.20, 0.30, and 0.40) gradually decrease. The highest reflection loss is − 29.8, − 27.4, − 24.1, − 18.6, and − 14.2 dB at 9.8, 8.9, 7.5, 6.9, and 6.5 GHz, respectively. The absorption peak shifts toward from higher frequency region to lower frequency region and the absorption bandwidth widens with the increase of the La substitution.


Crystal structure Rare-earth compounds Magnetic properties Microwave absorption properties 


Funding Information

This work was financially supported by the Natural Science Foundations of China (No. 51371061, No. 51761007, No. SQ2016YFGX090104, and No. 2016YFB0700901), Guangxi Natural Science Foundation (No. 2016GXNSFGA38001), and Innovation Project of Guang Xi Graduate Education (YCSW2018144).


  1. 1.
    Sugimoto, S.: Current status and recent topics of rare-earth permanent magnets. J. Phys. D: Appl. Phys. 44, 111 (2011)CrossRefGoogle Scholar
  2. 2.
    Hu, Z.H., Qu, H.J., Zhao, J.Q., Yan, C.J., Liu, X.M.: Effect of sintering process on the magnetic and mechanical properties of sintered Nd–Fe–B magnets. J. Magn. Magn. Mater. 368, 54 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Gutfleisch, O., Willard, M.A., Bruck, E., Chen, C.H., Shankar, S.G., Liu, J.P.: Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv. Mater. 23, 821 (2011)CrossRefGoogle Scholar
  4. 4.
    Woodcock, T.G., Zhang, Y., Hrkac, G., Ciuta, G., Dempsey, N.M., Schrefl, T., Gutfleisch, O., Givord, D.: Understanding the microstructure and coercivity of high performance NdFeB-based magnets. Scripta Mater. 67, 537 (2012)CrossRefGoogle Scholar
  5. 5.
    Woodcock, T.G., Zhang, Y., Hrkac, G., Ciuta, G., Dempsey, N.M., Schrefl, T., Gutfleisch, O., Givord, D.: Understanding the microstructure and coercivity of high performance NdFeB-based magnets. Scr. Mater. 67, 536 (2012)CrossRefGoogle Scholar
  6. 6.
    Li, D., Bogatin, Y.: Effect of composition on the magnetic properties of (Ce1−xNdx)13.5(Fe1−yzCoySiz)80 B 6.5 sintered magnets. J. Appl. Phys. 69, 5515 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    Zhou, S.X., Wang, Y.G., Høier, R.: Investigations of magnetic properties and microstructure of 40 Cedidymium-Fe-B based magnets. J. Appl. Phys. 75, 6286 (1994)CrossRefGoogle Scholar
  8. 8.
    Pathak, A.K., Khan, M., Gschneidner, A.K.: Cerium: An unlikely replacement of dysprosium in high performance Nd–Fe–B permanent magnets. Adv. Mater. 27, 2663 (2015)CrossRefGoogle Scholar
  9. 9.
    Li, Z.B., Shen, B.G., Zhang, M., Hu, F.X., Sun, J.R.: Substitution of Ce for Nd in preparing R2Fe14B nanocrystalline magnets. J. Alloys Compd. 628, 325 (2015)CrossRefGoogle Scholar
  10. 10.
    Honshima, M., Ohashi, K.: High-energy NdFeB Magnetic and Their Applications. J. Mater. Eng. Perf. 3, 218 (1994)CrossRefGoogle Scholar
  11. 11.
    Fu, W., Guo, S., Lin, C., Chen, R., Liu, X.: Effect of rare-earth content on coercivity and temperature stability of sintered Nd-Fe-B magnets prepared by dual-alloy method. Trans. Magn. 49, 3259 (2013)ADSGoogle Scholar
  12. 12.
    Yao, Q.R., Xiong, J.L., Liu, P., Zhou, H.Y., Rao, G.H., Deng, J.Q., Pan, S.K., Wang, J.: Determination of the phase diagrams of the Nd2Fe14B–Pr2Fe14B isopleth. J. Alloys Compd. 633, 229 (2015)CrossRefGoogle Scholar
  13. 13.
    Liu, X.B., Ma, Y.L., Altounian, Z., Zhang, Q.M., Liu, J.P.: First-principles survey on the doping of Ga in Nd2Fe14B. J. Appl. Phys. 115, 819 (2014)Google Scholar
  14. 14.
    De Campos, M.F., De Castro, J.A.: Modeling the heat treatment of Dy-diffused Nd2Fe14B magnets: the shell model. Mater. Sci. Forum. 727, 146 (2012)CrossRefGoogle Scholar
  15. 15.
    Yao, Q.R., Shen, Y.H., Yang, P.C., Zhou, H.Y., Rao, G.H., Deng, J.Q., Wang, Z.M., Zhong, Y.: Structure, phase diagram and magnetic properties of Bi1−xLaxFeO3 solid solution. Ceram. Int. 42, 6102 (2016)Google Scholar
  16. 16.
    Rodriguez-Carvajal, J.: Recent advances in magnetic structure determination by neutron powder diffraction. J. Physica B 192, 55 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    Jade 6.0: XRD Pattern processing. Materials Data Inc. (1999)Google Scholar
  18. 18.
    Shoemaker, C.B., Shoemaker, D.P., Fruchart, R.: The structure of a new magnetic phase related to the sigma phase: iron neodymium boride Nd2Fe14B. Acta Crystallogr. 40, 1665 (1984)CrossRefGoogle Scholar
  19. 19.
    Buschow, K.H.J.: New developments in hard magnetic materials. Rep. Prog. Phys. 54, 1123 (1991)ADSCrossRefGoogle Scholar
  20. 20.
    Fuerst, C.D., Capehart, T.W., Pinkerton, F.E., Herbst, J.F.: Preparation and characterization of La2−xCexFe14B compounds. J. Magn. Magn. Mater. 139, 362 (1995)ADSGoogle Scholar
  21. 21.
    Herbst, J.F.: R2fe14b materials: intrinsic properties and technological aspects. Rev. Mod. Phys. 63, 819–898 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    Buschow, K.H.J.: New developments in hard magnetic materials. Rep. Prog. Phys. 54, 1123 (1991)ADSCrossRefGoogle Scholar
  23. 23.
    Sinnema, S., Radwanski, R.J., Franse, J.J.M., Mooij, D.B.D., Buschow, K.H.J.: Magnetic properties of ternary rare-earth compounds of the type R2Fe14B. J. Magn. Magn. Mater. 44, 335 (1984)ADSCrossRefGoogle Scholar
  24. 24.
    Rahm, M., Skorodumova, N.V.: Phase stability of the rare-earth sesquioxides under pressure. Rev. B Condens. Matter. 80, 756 (2009)Google Scholar
  25. 25.
    Atkinson, S.C.: Crystal Structures and Phase Transitions in the Rare Earth Oxides. University of Salford (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yongqiang Xu
    • 1
  • Qingrong Yao
    • 1
    • 2
    Email author
  • Pengcheng Yang
    • 1
  • Huaiying Zhou
    • 1
    • 2
    Email author
  • Guanghui Rao
    • 1
    • 2
  • Jianqiu Deng
    • 1
  • Zhongmin Wang
    • 1
  1. 1.School of Materials Science and EngineeringGuilin University of Electronic TechnologyGuilinChina
  2. 2.Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations