Decreased Energy Gap and Enhanced Conductivity in Zn-Doped Sr2IrO4

  • Yongjian Wang
  • Liming YaoEmail author
  • Jianming Yao
  • Wenka Zhu
  • Changjin Zhang
Original Paper


The 5d transition metal oxide Sr2IrO4 has attracted much interest in the high-temperature superconductivity community since it highly resembles the cuprate superconductor in crystal and electronic structures. Here, we report on the transport and magnetic properties of Zn-doped Sr2IrO4. It is found that the energy gap of Sr2IrO4 is rapidly decreased with a small amount of Zn doping. Consequently, the electrical conductivity is significantly enhanced. The present work could serve as the prerequisite stage in exploring the possible superconductivity of the Sr2IrO4 compound.


Sr2IrO4 Energy gap Magnetic moment 



This work was supported by the National Key R&D Program of China (Grant Nos. 2017YFA0403600 and 2016YFA0300404) and the National Natural Science Foundation of China (Grant Nos. 51603207, U1532267, and 11674327).


  1. 1.
    Bednorz, J.G., Müller, K.A.: Z. Phys. B: Condens Matter 64, 189 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    Helmolt, R.V., Wecker, J., Holzapfel, B., Schultz, L., Samwer, K.: Phys. Rev. Lett. 71, 2331 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    Fisher, M.P.A., Grinstein, G.: Phys. Rev. Lett. 60, 208 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    Imada, M., Fujimori, A., Tokura, Y.: Rev. Mod. Phys. 70, 1039 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    Maheshwari, P.K., Reddy, V.R., Awana, V.P.S.: J. Supercond. Nov. Magn. 31, 1659 (2018)CrossRefGoogle Scholar
  6. 6.
    Arita, R., Kunes, J., Kozhevnikov, A.V., Eguiluz, A.G., Imada, M.: Phys. Rev. Lett. 108, 086403 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Meng, Z.Y., Kim, Y.B., Kee, H.Y.: Phys. Rev. Lett. 113, 177003 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Yan, Y.J., Ren, M.Q., Xu, H.C., Xie, B.P., Tao, R., Choi, H.Y., Lee, N., Choi, Y.J., Zhang, T., Feng, D.L.: Phys. Rev. X 5, 041018 (2015)Google Scholar
  9. 9.
    Kim, B.J., Ohsumi, H., Komesu, T., Sakai, S., Morita, T., Takagi, H., Arima, T.: PScience 323, 1329 (2009)ADSGoogle Scholar
  10. 10.
    Kim, Y.K., Krupin, O., Denlinger, J.D., Bostwick, A., Rotenberg, E., Zhao, Q., Mitchell, J.F., Allen, J.W., Kim, B.J.: Science 345, 187 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Pesin, D., Balents, L.: Nat. Phys. 6, 376 (2010)CrossRefGoogle Scholar
  12. 12.
    Kim, Y.K., Sung, N.H., Denlinger, J.D., Kim, B.J.: Nat. Phys. 12, 37 (2015)CrossRefGoogle Scholar
  13. 13.
    Wan, X., Turner, A.M., Vishwanath, A., Savrasov, S.Y.: Phys. Rev. B 83, 205101 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Krempa, W.W., Kim, Y.B.: Phys. Rev. B 85, 045124 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Machida, Y., Nakatsuji, S., Onoda, S., Tayama, T., Sakakibara, T.: Nature 463, 210 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Shitade, A., Katsura, H., Kuneš, J., Qi, X.L., Zhang, S.C., Nagaosa, N.: Phys. Rev. Lett. 102, 256403 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Wan, X., Vishwanath, A., Savrasov, S.Y.: Phys. Rev. Lett. 108, 146601 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Fujiyama, S., Ohsumi, H., Komesu, T., Matsuno, J., Kim, B.J., Takata, M., Arima, T., Takagi, H.: Phys. Rev. Lett. 108, 247212 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Watanabe, H., Shirakawa, T., Yunoki, S.: Phys. Rev. B 89, 165115 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Nichols, J., Bray-Ali, N., Ansary, A., Cao, G., Ng, K.W.: Phys. Rev. B 89, 085125 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Ge, M., Qi, T.F., Korneta, O.B., Long, D.E., Schlottmann, P., Crummett, W.P., Cao, G.: Phys. Rev. B 84, 100402 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Cao, G., Bolivar, J., McCall, S., Crow, J.E., Guertin, R.P.: Phys. Rev. B 57(R), 11039 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    Wang, C., Seinige, H., Cao, G., Zhou, J.S., Goodenough, J.B., Tsoi, M.: J. Appl. Phys. 117, 17A310 (2015)CrossRefGoogle Scholar
  24. 24.
    Crawford, M.K., Subramanian, M.A., Harlow, R.L., Fernandez-Baca, J.A., Wang, Z.R., Johnston, D.C.: Phys. Rev. B 49, 9198 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    Kim, J., Casa, D., Upton, M.H., Gog, T., Kim, Y.J., Mitchell, J.F., Veenendaal, M., Daghofer, M., van den Brink, J., Khaliullin, G., Kim, B.J.: Phys. Rev. Lett. 108, 177003 (2012)Google Scholar
  26. 26.
    Wang, F., Senthil, T.: Twisted Hubbard model for Sr2IrO4: magnetism and possible high temperature superconductivity. Phys. Rev. Lett. 106, 136402 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Chen, X., Hogan, T., Walkup, D., Zhou, W., Pokharel, M., Yao, M., Tian, W., Ward, T.Z., Zhao, Y., Parshall, D., Opeil, C., Lynn, J.W., Madhavan, V., Wilson, S.D.: Phys. Rev. B 92, 075125 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Dong, S., Zhang, B., Zhang, L., Chen, Y.B., Zhou, J., Zhang, S., Gu, Z., Yao, S.H., Chen, Y.F.: Phys. Lett. A 378, 2777 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Shimura, T., Inaguma, Y., Nakamura, T., Itoh, M., Morii, Y.: Phys. Rev. B 52, 9143 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    Han, T., Wang, Y.J., Yang, J., He, L., Xu, J., Liang, D., Han, H., Ge, M., Xi, C.Y., Zhu, W.K., Zhang, C.J., Zhang, Y.H.: Appl. Phys. Lett. 109, 192409 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    Calder, S., Cao, G.X., Lumsden, M.D., Kim, J.W., Gai, Z., Sales, B.C., Mandrus, D., Christianson, A.D.: Phys. Rev. B 86, 220403 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yongjian Wang
    • 1
  • Liming Yao
    • 2
    • 3
    Email author
  • Jianming Yao
    • 2
  • Wenka Zhu
    • 1
  • Changjin Zhang
    • 1
    • 4
  1. 1.Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field LaboratoryChinese Academy of SciencesHefeiChina
  2. 2.Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Institute of Physical Science and Information TechnologyAnhui UniversityHefeiChina

Personalised recommendations