Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 10, pp 3075–3078 | Cite as

High-Field Magneto-Conductivity Analysis of Bi2Se3 Single Crystal

  • Rabia Sultana
  • Ganesh Gurjar
  • S. Patnaik
  • V. P. S. Awana
Letter
  • 137 Downloads

Abstract

We report the high-field (up to 14 Tesla) magneto-conductivity analysis of Bi2Se3 topological insulator grown via the self-flux method. The detailed experimental investigations including crystal growth as well as the electrical, thermal, and spectroscopic characterizations of the resultant Bi2Se3 single crystal are already reported by some of us. The current letter deals with high-field magneto-conductivity analysis in terms of Hikami Larkin Nagaoka (HLN) model, which revealed that the electronic conduction is dominated by both surface state-driven weak anti-localization (WAL), as well as the bulk weak localization (WL) states. Further, by applying the HLN equation, we have extracted the fitting parameters, i.e., phase coherence length (lφ) and the pre-factor (α). Here, the magneto-conductivity data is fitted up to ± 5 Tesla, but in order to extract reliable fitting parameters, the same is fitted at much lower magnetic fields, i.e., up to ± 1 Tesla. The value of the HLN coefficient (α), extracted from the HLN equation exhibited values close to − 1.0, indicating both WAL and WL contributions. On the other hand, the extracted \(l_{\varphi }\) is seen to decrease from 11.125 to 5.576 nm as the temperature is increased from 5 to 200 K, respectively. Summarily, the short letter discusses primarily the temperature-dependent magneto-conductivity analysis of pristine Bi2Se3 single crystal by the HLN model.

Keywords

Topological insulator Crystal growth Magneto-conductivity 

Notes

Acknowledgements

The authors from CSIR-NPL would like to thank their Director NPL, India, for his keen interest in the present work. Rabia Sultana and Ganesh Gurjar thank CSIR, India for research fellowship. Rabia Sultana thanks AcSIR-NPL for Ph.D. registration.

References

  1. 1.
    Hasan, M.Z., Kane, C.L.: Rev. Mod. Phys. 82, 3045 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Moore, J.E.: Nature 464, 194 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Ando, Y.: J. Phys. Soc. Jpn. 82, 102001 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., Zhang, S.-C.: Nat. Phys. 5, 438 (2009)CrossRefGoogle Scholar
  5. 5.
    Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., Bansil, A., Grauer, D., Hor, Y.S., Cava, R.J., Hasan, M.Z.: Nat. Phys. 5, 398 (2009)CrossRefGoogle Scholar
  6. 6.
    Zhang, T., Cheng, P., Chen, X., Jia, J.-F., Ma, X., He, K., Wang, L., Zhang, H., Dai, X., Fang, Z., Xie, X., Xue, Q.-K.: Phys. Rev. Lett. 103, 266803 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Checkelsky, J.G., Hor, Y.S., Liu, M.-H., Qu, D.-X., Cava, R.J., Ong, N.P.: Phys. Rev. Lett. 103, 246601 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Peng, H., Lai, K., Kong, D., Meister, S., Chen, Y., Qi, X.-L., Zhang, S.-C., Shen, Z.-X., Cui, Y.: Nat. Mater. 9, 225 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Chen, J., Qin, H.J., Yang, F., Liu, J., Guan, T., Qu, F.M., Zhang, G.H., Shi, J.R., Xie, X.C., Yang, C.L., Wu, K.H., Li, Y.Q., Lu, L.: Phys. Rev. Lett. 105, 176602 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Lu, H.-Z., Shen, S.-Q.: Phy. Rev. B 84, 125138 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Cha, J.J., Kong, D., Hong, S.-S., Analytis, J.G., Lai, K., Cui, Y.: Nano Lett. 12, 1107 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Chiatti, O., Riha, C., Lawrenz, D., Busch, M., Dusari, S., Barriga, J.S., Mogilatenko, A., Yashina, L.V., Valencia, S., Unal, A.A., Rader, O., Fischer, S.F.: Sci. Rep. 6, 27483 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Sultana, R., Gurjar, G., Neha, P., Patnaik, S., Awana, V.P.S.: J. Supercond. Nov. Magn.  https://doi.org/10.1007/s10948-018-4762-0 CrossRefGoogle Scholar
  14. 14.
    He, H., Li, B., Liu, H., Guo, X., Wang, Z., Xie, M., Wang, J.: Appl. Phys. Lett. 100, 032105 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Hikami, S., Larkin, A.I., Nagaoka, Y.: Prog. Theor. Phys. 63, 707 (1980)ADSCrossRefGoogle Scholar
  16. 16.
    Sultana, R., Awana, G., Pal, B., Maheshwari, P.K., Mishra, M., Gupta, G., Gupta, A., Thirupathaiah, S., Awana, V.P.S.: J. Supercond. Nov. Magn. 30, 2031 (2017)CrossRefGoogle Scholar
  17. 17.
    Gupta, B.K., Sultana, R., Singh, S., Singh, V., Awana, G., Gupta, A., Singh, B., Srivasatava, A.K., Srivastava, O.N., Auluck, S., Awana, V.P.S.: Sci. Rep. 8, 2905 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CSIR-National Physical LaboratoryNew DelhiIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)-NPLNew DelhiIndia
  3. 3.School of Physical SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations