Advertisement

A Comparative Study on Microstructures, Magnetic Features and Morphologies of Ternary Fe–Co–Ni Alloy Thin Films Electrochemically Fabricated at Different Deposition Potentials

  • Umut SaracEmail author
  • Malik Kaya
  • M. Celalettin Baykul
Original Paper
  • 92 Downloads

Abstract

Electrochemically fabricated ternary Fe–Co–Ni alloy thin films with different chemical compositions were obtained at different deposition potentials. An increase in the deposition potential increased the Ni content while it decreased the Co and Fe contents in the film structure. An anomalous co-deposition behaviour was also studied and the anomalous order of co-deposition was found to be Fe–Ni > Co–Ni > Fe–Co irrespective of deposition potential. Structural characterizations confirmed the presence of single face-centred cubic (fcc) phase structure with [111] preferred crystallographic orientation for all films. The size of the crystallites and the texture degree increased with increasing applied deposition potential. Smaller globular particles occurred on the surface structure of the film fabricated at higher deposition potentials compared to those grown at lower deposition potentials. A decrement detected in the coercive field with increasing applied deposition potential was related to the variations occurred in the chemical composition and the particle size.

Keywords

Ternary Fe–Co–Ni thin films Morphologies Magnetic features Texture degree Anomalous co-deposition Applied deposition potential 

Notes

Acknowledgements

The authors thank Çağdaş Denizli, Eskişehir Osmangazi University, Turkey, for technical help during the AFM measurements.

References

  1. 1.
    Liu, X., Zangari, G., Shamsuzzoha, M.: J. Electrochem. Soc. 150, C159 (2003)CrossRefGoogle Scholar
  2. 2.
    Budi, S., Kurniawan, B., Mott, D.M., Maenosono, S., Umar, A.A., Manaf, A.: Thin Solid Films 642, 51 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Kuru, H., Kockar, H., Demirbas, O., Alper, M.: J. Mater. Sci.: Mater. Electron. 26, 4046 (2015)Google Scholar
  4. 4.
    Hou, X., Liu, S., Li, J., Yang, S., Guo, B.: Mater. Manuf. Process. 31, 62 (2016)CrossRefGoogle Scholar
  5. 5.
    Sun, X., Li, Z., Xu, F., Wang, Y.: J. Alloy. Compd. 656, 812 (2016)CrossRefGoogle Scholar
  6. 6.
    Park, D.-Y., Yoo, B.Y., Kelcher, S., Myung, N.V.: Electrochim. Acta 51, 2523 (2006)CrossRefGoogle Scholar
  7. 7.
    Yoo, B.Y., Hernandez, S.C., Park, D.-Y., Myung, N.V.: Electrochim. Acta 51, 6346 (2006)CrossRefGoogle Scholar
  8. 8.
    Kim, D., Park, D.-Y., Yoo, B.Y., Sumodjo, P.T.A., Myung, N.V.: Electrochim. Acta 48, 819 (2003)CrossRefGoogle Scholar
  9. 9.
    Phua, L.X., Phuoc, N.N., Ong, C.K.: J. Alloy. Compd. 543, 1 (2012)CrossRefGoogle Scholar
  10. 10.
    Sundaram, K., Dhanasekaran, V., Mahalingam, T.: Ionics 17, 835 (2011)CrossRefGoogle Scholar
  11. 11.
    Osaka, T., Takai, M., Hayashi, K., Ohashi, K., Yasue, Y., Saito, M., Yamada, K.: Nature 392, 796 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    Osaka, T., Takai, M., Hayashi, K., Sogowa, Y., Ohashi, K., Yasue, Y., Saito, M., Yamada, K.: IEEE Trans. Magn. 34, 1432 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    Osaka, T., Asahi, T., Kawaji, J., Yokoshima, T.: Electrochim. Acta 50, 4576 (2005)CrossRefGoogle Scholar
  14. 14.
    Sarac, U., Kaya, M., Baykul, M.C.: Turk. J. Phys. 41, 536 (2017)CrossRefGoogle Scholar
  15. 15.
    Sarac, U., Baykul, M.C., Uguz, Y.: J. Supercond. Nov. Magn. 28, 1041 (2015)CrossRefGoogle Scholar
  16. 16.
    Sarac, U., Baykul, M.C.: J. Mater. Sci. Technol. 28, 1004 (2012)CrossRefGoogle Scholar
  17. 17.
    Sarac, U., Öksüzoğlu, R.M., Baykul, M.C.: J. Mater. Sci.: Mater. Electron. 23, 2110 (2012)Google Scholar
  18. 18.
    Brenner, A.: Electrodeposition of Alloys Principles and Practice. Academic Press, New York (1963)Google Scholar
  19. 19.
    Yang, Y.: Int. J. Electrochem. Sci. 10, 5164 (2015)Google Scholar
  20. 20.
    Wilson, A.J.C.: Proc. Phys. Soc. Lond. 80, 286 (1962)ADSCrossRefGoogle Scholar
  21. 21.
    Ebrahimi, F., Ahmed, Z.: J. Appl. Electrochem. 33, 733 (2003)CrossRefGoogle Scholar
  22. 22.
    Hassani, S.H., Raeissi, K., Golozar, M.A.: J. Appl. Electrochem. 38, 689 (2008)CrossRefGoogle Scholar
  23. 23.
    Farzaneh, M.A., Zamanzad-Ghavidel, M.R., Raeissi, K., Golozar, M.A., Saatchi, A., Kabi, S.: Appl. Surf. Sci. 257, 5919 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Zaharov, Y.A., Pugachev, V.M., Ovcharenko, V.I., Datiy, K.A., Popova, A.N., Bogomyakov, A.S.: Phys. Status Solidi B 1700175, 1 (2017)Google Scholar
  25. 25.
    Cullity, B.D.: Elements of X-Ray Diffraction. Addison-Wesley, London (1978)Google Scholar
  26. 26.
    Horcas, I., Fernández, R., Gómez-Rodrguez, J.M., Colchero, J., Gómez-Herrero, J., Baro, A.M.: Rev. Sci. Instrum. 78, 013705 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Sarac, U., Baykul, M.C., Uguz, Y.: J. Supercond. Nov. Magn. 28, 3105 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Science EducationBartın UniversityBartınTurkey
  2. 2.Vocational School of Health ServiceEskişehir Osmangazi UniversityEskişehirTurkey
  3. 3.Department of Metallurgical and Materials EngineeringEskişehir Osmangazi UniversityEskişehirTurkey

Personalised recommendations