Advertisement

Physical Properties of Mn2O3 Nanoparticles Synthesized by Co-precipitation Method at Different pH Values

  • R. NajjarEmail author
  • R. Awad
  • A. M. Abdel-Gaber
Original Paper
  • 105 Downloads

Abstract

Mn2O3 nanoparticles were synthesized at different pH values ranging from 10 to 13 by co-precipitation technique. The characterization of all samples were completed by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), ultraviolet-absorption spectroscopy (UV), Raman spectroscopy, and M–H loop measurements. The XRD spectra show that the structure of Mn2O3 is cubic, and the lattice parameter a decreases as pH increases. Crystalline size, determined from TEM and XRD analyses, decreases as pH increases. TGA curves show that a mass loss is significantly affected as pH increases, indicating the decomposition of organic species besides the oxidation of Mn2O3 to Mn3O4. FTIR spectra indicate that the absorption peaks at 593.73 and 519.09 cm− 11 referred to the stretching vibration of Mn–O and Mn–O–Mn bonds during the synthesis of Mn2O3 nanoparticles. UV-visible spectroscopy is measured in the range 250–800 nm and showed a deviation to the lower wavelength in addition to an increase in the band-gap energy (Eg) values from 1.012 to 1.370 eV is obtained. Raman spectra shows a slight deviation to the left which is conversely proportional to the crystalline size. M–H loops for the prepared samples were measured and the results of retentivity (Ms) and coercivity (Hc) were discussed.

Keywords

Mn2O3 nanoparticles Raman spectroscopy XRD Energy gap 

Notes

Acknowledgements

This work was achieved in Beirut Arab University (BAU). The authors thank the Faculty of Science, Department of Physics, Beirut Arab University, Lebanon and Faculty of Science, Department of Physics, Alexandria University, Alexandria, Egypt.

References

  1. 1.
    Sharrouf, M., Awad, R., Roumie, M., Marhaba, S.: Structural, optical and room temperature magnetic study of Mn2O3 nanoparticles. Mater. Sci. Appl. 6, 850–859 (2015)Google Scholar
  2. 2.
    Oregan, B.B., Gratzel, M: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nat. Int. J. Sci. 353, 737–740 (1991)Google Scholar
  3. 3.
    Rutz, A.: Synthesis and properties of manganese oxide nanoparticles for environmental applications Mater. Sci. Appl. 98–99 (2009)Google Scholar
  4. 4.
    Kim, D.K., Zhang, Y., Kehr, J., Klason, T., Bjelke, B., Muhammed, M.: Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. J. Magn. Magn. Mater. 225, 256–261 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Stobbe, E.R., de Boer, B.A., Geus, J.W.: The reduction and oxidation behavior of manganese oxide. Appl. Catal. 47, 161–167 (1999)Google Scholar
  6. 6.
    Rudder, J., Wiele, TV, Dhooge, W., Comhaire, F., Verstraete, W.: Advanced water treatment with manganese oxide for the removal of 17-ethynylestradiol (EE2). Artic. Water Res. 38(1), 184–92 (2004)CrossRefGoogle Scholar
  7. 7.
    Julien, C.M., Massot, M., Poinsignon, C.: Lattice vibrations of manganese oxides: part I. Periodic Struct. Molec. Biomolec. Spectr. 60, 689–670 (2004)CrossRefGoogle Scholar
  8. 8.
    Baldi, M., Escribano, V.S., Amores, J.M.G., Milella, F., Busca, G.: Characterization of manganese and iron oxides as combustion catalysts for propane and propene. Appl. Catal. B Environ. 17, 175– 182 (1998)CrossRefGoogle Scholar
  9. 9.
    Talebi, R.: New method for preparation Mn2O3–TiO2 nanocomposites and study of their photocatalytic properties. J. Mater. Sci. Mater. Electron. 28(11), 8316–8321 (2017)CrossRefGoogle Scholar
  10. 10.
    Pérez-Garibay, R., Ana, G.G., Juan, F.A., Juan, R.Á., Simón, B.T.: Synthesis of Mn2O3 from manganese sulfated leaching solutions. Ind. Eng. Chem. Res. 55(35), 9468–9475 (2016)CrossRefGoogle Scholar
  11. 11.
    Siddaramanna, A., Pallellappa, C., Chikka, N.T., Gujjarahalli, T.C.: Synthesis and characterisation of microstructural α-Mn2O3 materials. J. Exp. Nanosci. 5(4), 285–293 (2010)CrossRefGoogle Scholar
  12. 12.
    Shao, C., Hongyu, G., Yichun, L., Xiliang, L., Xinghua, Y.: Preparation of Mn2O3and Mn3O4 nanofibers via an electrospinning technique. J. Solid State Chem. 177(7), 2628–2631 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Mohandes, F., Salavati-niasari, M., Rezaei, M.: Preparation of Mn2O3 nanostructures with different shapes by a simple solid-state method. J. Mater. Sci.: Mater. Electron. 26, 7013–7019 (2015)Google Scholar
  14. 14.
    Pudukudy, M., Yaakob, Z.: Synthesis, characterization, and photocatalytic performance of mesoporous α-Mn2O3 microspheres prepared via a precipitation route. J. Nanomater. 2016, 1–7 (2016)Google Scholar
  15. 15.
    Zanyong, Z.: Mn2O3 hollow spheres synthesized based on ion-exchange strategy from amorphous calcium carbonate for highly efficient trace-level uranyl extraction. Electronic Supplementary Material (ESI) for Environmental Science: Nano (2016)Google Scholar
  16. 16.
    Javed, Q.: Canted antiferromagnetic and optical properties of nanostructures of Mn2O3 prepared by hydrothermal synthesis. Chin. Phys. B 21, 11731 (2012)CrossRefGoogle Scholar
  17. 17.
    Deshpande, S., Patil, S., Kuchibhatla, S., Seala, S.: Appl. Phys. Lett. 87, 133113 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Sui. M.L., Lu, K.: Variation in lattice parameters with grain size of a nanophase Ni3P compound. Mater. Sci. Eng. A179/A 180, 541–544 (1994)CrossRefGoogle Scholar
  19. 19.
    Peipei, W.: Effect of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process. Powder Technol. 203, 315–321 (2010)CrossRefGoogle Scholar
  20. 20.
    Mohanraj, V.: Influence of pH on particle size, band-gap and activation energy of CdS nanoparticles synthesized at constant frequency ultrasonic wave irradiation. Mater. Sci. Semicond. Process. 66, 131–139 (2017)CrossRefGoogle Scholar
  21. 21.
    Kiyoshi, T., Masao, I.: Study on thermal decomposition of MnO2 and Mn2O by thermal analysis. Trans. Jpn. Inst. Metals 24(11), 754–758 (1983)CrossRefGoogle Scholar
  22. 22.
    Shengxue, Y, Hongyan, Y., Huiyan, M., Shu, G., Fei, C., Jian, G., Yulin, D.: Manganese oxide nanocomposite fabricated by a simple solidstate reaction and its ultraviolet photoresponse property. Chem. Commun. 47(9), 2619–2621 (2011)CrossRefGoogle Scholar
  23. 23.
    Patsalas, P., Logothetidis, S.: Optical performance of nanocrystalline transparent ceria films. Appl. Phys. Lett. 81, 466–468 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    Mahmood, M.A., Baruah, S.: Enhanced visible light photocatalysis by manganese doping or rapid crystallization with ZnO nanoparticles. Mater. Chem. Phys. 130, 531–535 (2011)CrossRefGoogle Scholar
  25. 25.
    Swaroop, K., Somashekarappa, H.M.: Effect of pH values on surface morphology and particle size variation in ZnO nanoparticles synthesized by co-precipitation method. Res. J. Recent Sci. 4, 197–201 (2015)Google Scholar
  26. 26.
    Javed, Q., Wang, F.P.: Canted antiferromagnetic and optical properties of nanostructures of Mn2O3 prepared by hydrothermal synthesis. Chin. Phys. B 21, 11731 (2012)CrossRefGoogle Scholar
  27. 27.
    Hong, S.S., Kim, E.: J. Non-Cryst. Solids 221, 245 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    Julien, C., Massot, M.: Raman spectroscopic studies of lithium manganates with spinel structure. J. Phys.: Condens. Matter 15, 3151–3162 (2003)ADSGoogle Scholar
  29. 29.
    Gao, T., Glerup, M., Krumeich, F., Nesper, R., Fjellvåg, H., Norby, P.: Microstructures and spectroscopic properties of cryptomelane-type manganese dioxide nanofibers. J. Phys. Chem. C 112, 13134–13140 (2008)CrossRefGoogle Scholar
  30. 30.
    Julien, C., Massot, M., Baddour-Hadjean, R., Franger, S., Bach, S., Pereira-Ramos, J.P.: Raman spectra of birnessite manganese dioxides. Solid State Ion 159, 345–356 (2003)CrossRefGoogle Scholar
  31. 31.
    Ramirez, A., Hillebrand, P., Stellmach, D., May, M.M., Bogdanoff, P., Fiechter, S.: Evaluation of MnOX, Mn2O3, and Mn3O4 electrodeposited films for the oxygen evolution reaction of water. J. Phys. Chem. C 118, 14073–14081 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceBeirut Arab UniversityBeirutLebanon
  2. 2.Department of Physics, Faculty of ScienceBeirut Arab UniversityBeirutLebanon

Personalised recommendations