Advertisement

Role of Dysprosium Doping on Structural, Optical, Magnetic and Electrical Properties of ZnO Nanorods

  • Nupur AggarwalEmail author
  • Ajay Vasishth
  • Kamaldeep Kaur
  • N. K. Verma
Original Paper
  • 71 Downloads

Abstract

Well-defined Dy-doped ZnO rods were synthesized by hydrothermal route. Various studies were carried out on the synthesized rods like x-ray diffraction to confirm their hexagonal wurtzite structure; TEM, HRTEM and selected area electron diffraction to establish their rodlike structure; energy-dispersive x-ray spectroscopy analysis confirming appropriate substitution of dopant; UV-Vis spectra, which showed decrease in band gap with dopant concentration and photoluminescence study furnishing information regarding the presence of various types of defects. Further, magnetic studies were done using VSM to confirm roomtemperature ferromagnetic behaviour of both for undoped and doped ZnO rods and, the electrical studies were performed using four probe method, which confirmed that the ‘variation in resistivity with dopant concentration’ was related to crystallinity of the samples. UV-Vis spectra showed effect of dopant concentration on band gap and photoluminescence study confirms induced ferromagnetic behaviour due to Dy doping.

Keywords

Nanorods RTFM DMS Dysprosium ZnO 

References

  1. 1.
    Alaria, J., Venkatesan, M., Coey, J.M.D.: Magnetism of ZnO nanoparticles doped with 3d cations prepared by a solvothermal method. J. Appl. Phys. 103, 107–110 (2008).  https://doi.org/10.1063/1.2833840 CrossRefGoogle Scholar
  2. 2.
    Ferrand, D., Wasiela, A., Tatarenko, S., Cibert, J., Richter, G., Grabs, P., Schmidt, G., Molenkamp, L.W., Dietl, T.: Applications of II − VI diluted magnetic semiconductors for magneto-electronics. Solid State Commun. 119(4-5), 237–244 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Khajuria, H., Ladol, J., Singh, R., Khajuria, S., Sheikh, H.N.: Surfactant assisted sonochemical and synthesis characterization of gadolinium doped zinc oxide nanoparticles. Acta Chim. Slov. 62, 849–858 (2015).  https://doi.org/10.17344/acsi.2015.1558 CrossRefGoogle Scholar
  4. 4.
    Singh, J., Vasishth, A., Verma, N.K.: Multiferroic properties of Zn1-xMgxO nanoparticles. J. Supercond. Nov. Magn. 28, 3069–3074 (2015).  https://doi.org/10.1007/s10948-015-3133-3 CrossRefGoogle Scholar
  5. 5.
    Chen, S.-H., Yu, C.-F., Chien, C.-S.: Nanoscale electrical properties of ZnO nanorods grown by chemical bath deposition. Microsc. Res. Tech. 80(7), 671–679 (2017)CrossRefGoogle Scholar
  6. 6.
    El Hachimi, A.G., Zaari, H., Benyoussef, A., El Yadari, M., El Kenz, A.: First-principles prediction of the magnetism of 4f rare-earth-metal-doped wurtzite zinc oxide. J. Rare Earths 32, 715–721 (2014).  https://doi.org/10.1016/S1002-0721(14)60131-9 CrossRefGoogle Scholar
  7. 7.
    Bai, S., Liu, X., Li, D., Chen, S., Luo, R., Chen, A.: Synthesis of ZnO nanorods and its application in NO2 sensors. Sens. Actuators B Chem. 153, 110–116 (2011).  https://doi.org/10.1016/j.snb.2010.10.010 CrossRefGoogle Scholar
  8. 8.
    Iqbal, J., Liu, X., Zhu, H., Pan, C., Zhang, Y., Yu, D., Yu, R.: Trapping of Ce electrons in band gap and room temperature ferromagnetism of Ce[sup 4 + ] doped ZnO nanowires. J. Appl. Phys. 106, 83515 (2009).  https://doi.org/10.1063/1.3245325 CrossRefGoogle Scholar
  9. 9.
    Thangeeswari, T., Murugasen, P., Velmurugan, J.: Influence of Co and Dy doping on the optical and magnetic properties of ZnO nanoparticles for DMS application. J. Supercond. Nov. Magn. 28, 2505–2515 (2015).  https://doi.org/10.1007/s10948-015-3045-2 CrossRefGoogle Scholar
  10. 10.
    Shikha, D., Mehta, V., Sood, S.C., Sharma, J.: Structural and optical properties of ZnO thin films deposited by sol–gel method: effect of stabilizer concentration. J. Mater. Sci. Mater. Electron. 26, 4902–4907 (2015).  https://doi.org/10.1007/s10854-015-3000-9 CrossRefGoogle Scholar
  11. 11.
    Jindal, S., Kaur, K., Verma, N.K., Sharma, P.: Effect of Tb3 + ion substitution on structural, optical and magnetic properties of CdS nanoparticles. J. Mater. Sci. Mater. Electron.  https://doi.org/10.1007/s10854-017-7891-5 (2017)Google Scholar
  12. 12.
    Aggarwal, N., Kaur, K., Vasishth, A., Verma, N.K.: Structural, optical and magnetic properties of gadolinium-doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 27, 13006–13011 (2016).  https://doi.org/10.1007/s10854-016-5440-2 CrossRefGoogle Scholar
  13. 13.
    Thaslin, S., Fathima, N., Anandhan, A., Ganesan, A.R.K.P, Karthikeyan, M., Marimuthu, T.: Surface texture and luminous analysis of Sol-Gel spin coated Dy-doped ZnO thin films. IRJET 2017(04-09), 89–95 (2017)Google Scholar
  14. 14.
    Mofokeng, S.J., Kumar, V., Kroon, R.E., Ntwaeaborwa, O.M.: Structure and optical properties of Dy 3 + activated sol-gel ZnO-TiO2 nanocomposites. J. Alloys Compd. 711, 121–131 (2017).  https://doi.org/10.1016/j.jallcom.2017.03.345 CrossRefGoogle Scholar
  15. 15.
    Debnath, T., Das, S., Das, D., Sutradhar, S.: Optical, magnetic and dielectric properties of ZnO:Y nanoparticles synthesized by hydrothermal method. J. Alloys Compd. 696, 670–681 (2017).  https://doi.org/10.1016/j.jallcom.2016.11.270 CrossRefGoogle Scholar
  16. 16.
    Das, S., Das, S., Das, D., Sutradhar, S.: Tailoring of room temperature ferromagnetism and electrical properties in ZnO by Co (3d) and Gd (4f) element co-doping. J. Alloys Compd. 691, 739–749 (2017).  https://doi.org/10.1016/j.jallcom.2016.08.287 CrossRefGoogle Scholar
  17. 17.
    Ramu, S., Vijayalakshmi, R.P.: Effect of terbium doping on the structural and magnetic properties of ZnS nanoparticles. J. Supercond. Nov. Magn. 30, 1921–1925 (2017).  https://doi.org/10.1007/s10948-016-3960-x CrossRefGoogle Scholar
  18. 18.
    Gao, D., Zhang, Z., Fu, J., Xu, Y., Qi, J., Xue, D.: Room temperature ferromagnetism of pure ZnO nanoparticles. J. Appl. Phys. 105, 119 (2009).  https://doi.org/10.1063/1.3143103 CrossRefGoogle Scholar
  19. 19.
    Sundaresan, A., Bhargavi, R., Rangarajan, N., Siddesh, U., Rao, C.N.R.: Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 74, 161306 (2006).  https://doi.org/10.1103/PhysRevB.74.161306 ADSCrossRefGoogle Scholar
  20. 20.
    Zuo, X., Yoon, S.D., Yang, A., Duan, W.H., Vittoria, C., Harris, V.G.: Ferromagnetism in pure wurtzite zinc oxide. J. Appl. Phys. 105, 8–11 (2009).  https://doi.org/10.1063/1.3062822 CrossRefGoogle Scholar
  21. 21.
    Sharma, D.K., Sharma, K.K., Kumar, V., Sharma, A.: Synthesis of Er doped ZnO cone-like nanostructures with enhanced structural, optical and magnetic properties. J. Mater. Sci. Mater. Electron. 1–10.  https://doi.org/10.1007/s10854-017-8320-5 (2017)Google Scholar
  22. 22.
    Lokhande, B.J., Patil, P.S., Uplane, M.D.: Studies on structural, optical and electrical properties of boron doped zinc oxide films prepared by spray pyrolysis technique. Phys. B Condens. Matter 302–303, 59–63 (2001).  https://doi.org/10.1016/S0921-4526(01)00405-7 ADSCrossRefGoogle Scholar
  23. 23.
    Che Ani, N., Sahdan, M.Z., Nafarizal, N., Mohd Tawil, S.N.: Investigation of the structural, optical and electrical properties of gadolinium-doped zinc oxide films prepared by sol-gel method. Adv. Mater. Res. 1133, 424–428 (2016).  https://doi.org/10.4028/www.scientific.net/AMR.1133.424 CrossRefGoogle Scholar
  24. 24.
    Muchuweni, E., Sathiaraj, T.S., Nyakotyo, H.: Effect of gallium doping on the structural, optical and electrical properties of zinc oxide thin films prepared by spray pyrolysis. Ceram. Int. 42, 10066– 10070 (2016).  https://doi.org/10.1016/j.ceramint.2016.03.110 CrossRefGoogle Scholar
  25. 25.
    Winer, I., Shter, G.E., Mann-Lahav, M., Grader, G.S.: Effect of solvents and stabilizers on sol–gel deposition of Ga-doped zinc oxide TCO films. J. Mater. Res 26, 1309–1315 (2011).  https://doi.org/10.1557/jmr.2011.69 ADSCrossRefGoogle Scholar
  26. 26.
    Kumar, P., Kumar, Y., Malik, H.K., Annapoorni, S., Gautam, S., Chae, K.H., Asokan, K.: Possibility of room-temperature multiferroism in Mg-doped ZnO. Appl. Phys. A Mater. Sci. Process. 114, 453–457 (2014).  https://doi.org/10.1007/s00339-013-7664-9 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nupur Aggarwal
    • 1
    Email author
  • Ajay Vasishth
    • 2
  • Kamaldeep Kaur
    • 1
  • N. K. Verma
    • 3
  1. 1.Department of PhysicsChandigarh UniversityMohaliIndia
  2. 2.Department of PhysicsChandigarh Group of CollegesMohaliIndia
  3. 3.School of Physics and Material ScienceThapar UniversityPatialaIndia

Personalised recommendations