Influence of BaTiO3 on Magnetic and Transport Properties of La0.7Sr0.3MnO3-BaTiO3 Nanocomposite

  • Kumar Navin
  • Rajnish KurchaniaEmail author
Original Paper


La0.7Sr0.3MnO3 (LSMO)-BaTiO3 (BTO) nanocomposites have been synthesized by adding different amounts of BTO using the sol-gel method. The structural analysis confirms that both phases coexist in the composite samples with the rhombohedral and tetragonal structure for LSMO and BTO, respectively. The magnetization measurement shows a decrease in magnetization with the increase in BTO concentration and a signature of the spin glass-like characteristics of the nanocomposite. The dielectric behavior indicates the existence of the magneto-electric coupling between LSMO and BTO phase. The measurement of transport properties shows that resistivity increases with BTO concentration and metal-insulator (M-I) transition temperature shifts towards lower temperature. The low-temperature (T < 50 K) resistivity behavior of the samples is analyzed by using the Kondo-like transport model. The results show the spin-disordered scattering increases with the increase in the amount of BTO in LSMO phase. The low-field magnetoresistance (LFMR) of the nanocomposite is improved as compared to the pure LSMO. The highest value of LFMR achieved for LSMO-BTO composite at 10 K is 35.5% with a 1 T magnetic field.


Nanocomposite M-I transition Kondo-like transport 



The authors want to thank UGC-DAE, CSR, for providing the experimental facility. Kumar Navin is thankful to the MHRD, Government of India, and to the Director of MANIT for the institute fellowship and for providing the infrastructure to carry out this research work.


  1. 1.
    Moodera, J.S., Mathon, G.: Spin polarized tunneling in ferromagnetic junctions. J. Magn. Mater. 200, 248–273 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    Yin, Y.W., Raju, M., Hu, W., Weng, X., Zou, K., Zhu, J., Li, X., Zhang, Z., Li, Q.: Multiferroic tunnel junctions. Front. Phys. 7(4), 380–385 (2012)CrossRefGoogle Scholar
  3. 3.
    Sadhu, A., Bhattacharyya, S.: Enhanced low-field magnetoresistance in La0.7Sr0.3MnO3 nanoparticles synthesized by non-aqueous sol-gel route. Chem. Mater. 26, 1702–1710 (2014)CrossRefGoogle Scholar
  4. 4.
    Das, K., Satpati, B., Das, I.: The effect of artificial grain boundaries on magneto-transport properties of charge ordered-ferromagnetic nanocomposites. RSC Adv. 5, 27338–27346 (2015)CrossRefGoogle Scholar
  5. 5.
    Das, K., Rawat, R., Satpati, B., Das, I.: Giant enhancement of magnetoresistance in core-shell ferromagnetic charge ordered nanostructure. Appl. Phys. Lett. 103, 202406 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Chen, A., Hu, J., Yang, T., Zhang, W., Li, L., Ahmed, T., Enriquez, E., Weigand, M., Su, Q., Wang, H., Zhu, J., Macmanus-Driscoll, J., Chen, L., Yarotski, D., Jia, Q.: Role of scaffold network in controlling strain and functionalities of nanocomposite films. Sci. Adv. 2, e1600245 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Keshri, S., Rajput, S.S.: Effect of BTO addition on the structural and magnetoresistive properties of LSMO. Phase. Transit. 87, 136–147 (2014)CrossRefGoogle Scholar
  8. 8.
    Huang, B., Liu, Y., Zhang, R., Yuan, X., Wang, C., Mei, L.: Low field magnetoresistance behavior in La0.67Ca0.33MnO3/ZrO2 composite system. J. Phys. D: Appl. Phys. 74, 4014 (1999)Google Scholar
  9. 9.
    Navin, K., Kurchania, R.: Structural magnetic and transport properties of the La0.7Sr0.3MnO3-ZnO nanocomposites. J. Magn. Magn. Mater. 448, 228–235 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    Balcells, L.I., Carrillo, A.E., Martinez, B., Fontcuberta, J.: Enhanced field sensitivity close to the percolation in magneto resistive La2/3Sr1/3MnO3/CeO2 composites. Appl. Phys. Lett. 74, 4014 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    Eshraghi, M., Salamati, H., Kameli, P.: The effect of NiO doping on the structure, magnetic and magnetotransport properties of La0.8Sr0.2MnO3 composite. J. Alloy Compd. 437, 22–26 (2007)CrossRefGoogle Scholar
  12. 12.
    Gaur, A., Verma, G.D., Singh, H.K.: Enhanced low field magnetoresistance in La0.7Sr0.3MnO3/TiO2 composite. J. Phys. D: Appl. Phys. 39, 3531–3535 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Hwang, H.Y., Cheong, S.W., Ong, N.P., Batlogg, B.: Spin-polarised intergrain tunnelling in La2/3Sr1/3MnO3. Phys. Rev. Lett. 77, 2041–2044 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    Nayek, C., Samanta, S., Manna, K., Pokle, A., Nanda, B.R.K., Kumar, P.S.A., Murugavel, P.: Spin-glass state in nanoparticulate (La0.7Sr0.3MnO3)1−x (BaTiO3)x solid solutions: experimental and density-functional studies. Phys. Rev. B 93, 094401 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Kumar, M., Shankar, S., Dwivedi, G.D., Anshul, A., Thakur, O.P., Ghosh, A.K.: Magneto-dielectric coupling and transport properties of the ferromagnetic-BaTiO3 composites. Appl. Phys. Lett. 106(1–4), 072903 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Varshney, D., Dar, M.A.: Structural and magneto-transport properties of (1-x) La0.67Sr0.33MnO3(LSMO) + (x)BaTiO3(BTO) composites. J. Alloys Compd. 619, 122–130 (2015)CrossRefGoogle Scholar
  17. 17.
    Phong, P., Manh, D., Dang, N., Hong, L., Lee, I.: Enhanced low-field-magnetoresistance and electro-magnetic behavior of La0.7Sr0.3MnO3-BaTiO3 composites. Phys. B 407, 3774–3780 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Staruch, M., Gao, H., Gao, P., Jain, M.: Low field magnetoresistance in La0.67Sr0.33MnO3: ZnO composite film. Adv. Funct. Mater. 22, 3591–3595 (2012)CrossRefGoogle Scholar
  19. 19.
    Wang, Y., Fan, H.J.: Low field magnetoresistance effect in core-shell structured La0.7Sr0.3CoO3 nanoparticles. Small 8(7), 1060–1065 (2012)CrossRefGoogle Scholar
  20. 20.
    Curecheriu, L., Balmus, S., Buscaglia, M., Buscaglia, V., Ianculescu, A., Mitoseriu, L.: Grain size-dependent properties of dense nanocrystalline barium titanate ceramics. J. Amer. Ceram. Soc. 95, 3912–3921 (2012)CrossRefGoogle Scholar
  21. 21.
    Thirmal, C., Nayek, C., Murugavel, P., Subramanian, V.: Magnetic, dielectric and magnetoelectric properties of PVDF-La0.7Sr0.3MnO3 polymer nanocomposite thin film. AIP Adv. 3(1–8), 112109 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Singh, A., Pandey, V., Kotnala, R., Pandey, D.: Direct evidence for multiferroic magnetoelectric coupling in 0.9BiFeO3–0.1BaTiO3. Phys. Rev. Lett. 101, 247602 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Kimura, T., Kawamoto, S., Yamada, I., Azuma, M., Takano, M., Tokura, Y.: Magnetocapacitance effect in multiferroic BiMnO3. Phys. Rev. B 67(1–4), 180401R (2003)ADSCrossRefGoogle Scholar
  24. 24.
    Andres, A., Gracia-Harnandez, M., Martinez, J.: Conduction channels and magnetoresistance in polycrystalline manganites. Phys. Rev. B 60, 7328–7334 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    Zhou, Y., Zhu, X., Li, S.: Effect of particle size on electric and magnetic properties of La0.7Sr0.3MnO3 coatings. Phys. Chem. Chem. Phys. 17, 31161–31169 (2015)CrossRefGoogle Scholar
  26. 26.
    Navin, K., Kurchania, R.: The effect of particle size on structural, magnetic and transport properties of La0.7Sr0.3MnO3 nanoparticles. Ceram. Inter. 44, 4973–4980 (2018)CrossRefGoogle Scholar
  27. 27.
    Zhang, J., Xu, Y., Cao, S., Cao, G., Zhang, Y., Jing, C.: Kondo-like transport and its correlation with the spin-glass phase in perovskite manganites. Phys. Rev. B 72(1–6), 054410 (2010)ADSGoogle Scholar
  28. 28.
    Guo, E.U., Wang, L., Wu, Z.P., Wang, L., Lu, H.B.: Magnetic field mediated low-temperature resistivity upturn in electron-doped La1−xHfxMnO3. J. Appl. Phys. 112(1–7), 123710 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Jin, Y., Qian, X., Lu, B., Cao, S., Zhang, J.: Quantum correction to low-temperature resistivity induced by disorder in La2/3Sr1/3MnO3-ZrO2 matrix composites. RSC Adv. 5, 2354–2359 (2015)CrossRefGoogle Scholar
  30. 30.
    Blacells, L., Fontcuberta, J., Martinez, B., Obradors, X.: High field magnetoresistance at interfaces in manganese perovskites. Phys. Rev. B 58, 697–700 (1998)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Functional Nanomaterials Laboratory, Nanoscience and Engineering Center, Department of PhysicsMaulana Azad National Institute of Technology (MANIT)BhopalIndia

Personalised recommendations